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Abstract—Visual quality of rainy images are considerably 

poor due to the raindrops in camera lens and the rain streaks in 

the background scenes. Although the raindrops and rain streaks 

are appeared together in real-world rainy images, most of the 

previous approaches are proposed to remove either of them. In 

this paper, we have proposed a novel CNN model architecture 

to remove raindrops and rain streaks together. The proposed 

CNN model architecture has two branches and it consumes two 

formats of a rainy image via an encoder-decoder network and a 

dense CNN network. At the end of the architecture, outputs of 

both branches are combined to produce a high-visibility rain-

free image with natural colours. In addition, internal and 

external skip connections are introduced in the blocks of these 

branches to improve the performance further. The proposed 

model is trained and then tested on RainDrop, Rain100H, 

Rain100L, and Rain12 benchmarks and showed excellent 

performance than the state-of-the-art approaches.  

Keywords—Raindrop removal, rain streak removal, De-

raining, Convolutional Neural Network 

I. INTRODUCTION 

Bad weather conditions are significantly degrading the 
visibility of outdoor scenes and rain is the primary cause. Poor 
visibility of outdoor images in rainy sessions is the major 
challenge for many computer vision based automated systems 
such as autonomous driving[1], vehicle tracking[2], traffic 
monitoring[2], and visual surveillance[3]. Raindrops and rain 
streaks significantly reduce the quality of images and videos 
by dropping or blocking on camera lens, and creating a 
fogging appearance, respectively. Automated rain removal 
systems are proposed using computer vision based algorithms 
and they are objective to improve the visual quality of single 
rainy images by enhancing and restoring the colour and 
details.   

Raindrops and rain streaks are the major causes for the 
poor quality in outdoor images. Raindrops blocks the camera 
lens and hence irregular geometric structures are appeared on 
images and then the image is captures with blurred scenes. In 
addition, they reduced the contrast of the image and fade the 
natural colours. On the other hand, rain streaks create a foggy 
appearance in the image by blurring the background and hence 
the visibility is reduced. Moreover, in nearby scenes, 
individual rain streaks are significantly visible and causes 
visibility degradation in rainy images. Generally, raindrops 
and rain streaks are simultaneously appearing in an image and 
they cause change of an object’s shape and occlusion in a 
scene, respectively. Differences of raindrops and rain streaks 
in rainy images are illustrated in Fig.1. Due to the differences 
of their physical appearance, most of the researchers 
individually investigated the raindrops and rain streaks in 
images and then proposed the separate models for automated 
raindrop removal and rain streak removal.  

In recent years, a considerable numbers of automated 
raindrop removal approaches[4-12] are proposed. These 

approaches are objective to eliminate the raindrops and then 
produce a high-quality image with clear background. Some of 
the early approaches[11] proposed their models based on the 
physical imaging characterises of raindrops such as light 
reflection and camera focus. However, most of the recent 
raindrop removal approaches did not consider the physical 
imaging factors and rely only on deep learning based 
algorithms. In these approaches, Generative Adversarial 
Networks (GANs)[4, 6, 10, 12] and Convolutional Neural 
Networks (CNNs)[5, 7-9, 13] are used to produce a clear 
raindrop-free image in an end-to-end manner. Most of the 
researchers use a publicly available raindrop benchmark 
dataset[4] to evaluate their performances.   

In the past decade, several rain streak removal 
approaches[14-25] are proposed. In these approaches, a rainy 
image (R) with rain streaks are considered and modelled as 
follows: 

 R = 𝑆 + 𝐵 (1) 

where 𝑆  and 𝐵  are the rain streak layer and 𝐵  is clean 
background layer, in that rainy image. Based on that, 
researchers considered rain streak removal as separating layer 
𝐵 from layer 𝑆 for a given input R. Although early approaches 
depending on image processing based algorithms to the 
separate streak layer from the background layer, most of the 
recent approaches[14] are rely on deep learning based 
solutions such as CNNs[14, 16, 18-21, 23-25] and GANs[17]. 
There are three well-known benchmark datasets[26, 27] are 
available to evaluate the performance of rain streak models.  

In real-world situations, raindrops and rain streaks are 
regularly appeared together as shown in Fig.1 (c) and (d). Due 
to this fact, a few numbers of approaches[26-31] are tried to 
provide a joint solution for both problems. In most situations, 
these approaches proposed a single model to remove the 
raindrops and rain streaks. Since there are no benchmark 
datasets available with raindrops and rain streaks together in 

(a) (b) 

(c) (d) 

Fig. 1: Poor visibility of rainy images. (a) Blurred scene by raindrops, (b) 

Rain streaks are occluded in a scene, (c) & (d) quality degradation by both 

raindrops and rain streaks in single images. 



images, these approaches evaluated their performances in 
raindrop and rain streak benchmarks in an individual manner.  

To handle the real-world situations, a robust rain removal 
framework should remove the raindrops and rain streaks from 
single images in real-time. Also, they should restore the details 
and natural colours. To achieve these objectives, we have 
proposed a novel CNN model architecture to removes the 
raindrops and rain streaks together. The proposed architecture 
has two CNN branches to costumes two different images and 
then produces a clear rain-free image. A raw rainy input image 
and an its colour enhanced image are fed to the proposed CNN 
model architecture to obtain a rain-free image with missing 
details and natural colours. The performance of the proposed 
CNN model architecture is individually evaluated on publicly 
available raindrop removal and rain streaks removal datasets. 
Based on the experimental results, our proposed CNN model 
architecture qualitatively and quantitatively outperforms the 
existing approaches on these benchmarks and real-world 
images.   

II. RELATED WORK 

The most recent and related works are reviewed in this 
section since several experimental reviews[32, 33] are 
available on single image raindrop removal and rain streak 
removal.  

A. Filter and Prior Based Approaches 

Most of the early raindrop removal and rain streak removal 
approaches are proposed based on either filter based or prior 
based techniques. In filter based approaches, an image filter is 
used to separate the rain layer from the background layer. Xu 
et al., [34] used the Guided filter to remove the rain and snow 
from a single image. Kim et al., [35] used non local means 
filter in rain removal based on the aspect ratio and rotation 
angle of the elliptical kernel in a rainy image. Rain removal 
performance of filter based approach are considerably poor 
since they have applied the same filter in all local image 
regions without considering the density variations of rain 
layer.  

In prior based approaches, physical and imaging 
characterises of rain in an image are analysed and then that 
prior information is used to model the rainy images. 
Thereafter, that rainy image prior model is used to decompose 
the image into rain and background layers based on the 
physical properties of the rain. Tan et al., [26] proposed a 
model based on Gaussian mixture and it can able to separate 
the rain layer in local regions by considering the orientation 
and size of rain streaks. Luo et al., [15] proposed a non-linear 
decomposing technique by creating a discriminative 
dictionary in local image patches. Although prior based 
approaches are performed better than the filter based 
approaches, their outputs are not in satisfactory level since 
they are depending on hand-crafted features and image priors.  

B. Deep Learning Based Rain Removal Methods 

In recent years, deep learning based techniques and 
architectures are became popular to remove the raindrops and 
rain streaks in a single rainy image. These approaches are able 
to remove the rain layer from background layer from a raw 
rainy image in an end-to-end manner. Several novel CNN 
model architectures and GAN architectures are proposed to 
achieve the high performance.  

In the last five years, several deep learning based rain drop 
removal approaches are proposed. Qian et al., [4] proposed an 
attentive generative adversarial network to learn the raindrop 
regions and structures through an adversarial learning process. 
A novel aggregation CNN model architecture is proposed by 
Lin et al., [5]. They have converted a RGB rainy image to 
YUV and then fed it to the CNN model to remove the 
raindrops. Nauyen and Lee [6] used an enhanced version of 
GAN in raindrop removal by utilizing several prior 
information. The same authors [12] proposed another 
approach based on the multi task GAN and also used the 
segmentation to improve the raindrop removal process. 
Similar to that approach, Zhang et al., [10] used a conditional 
GAN architecture to generate the rain-free image. Hao et al., 
[7] generated synthetic raindrop images to handle the data 
deficiency and then used a CNN model to generate raindrop-
free image. Porav et al.,[8] restored the missing details in a 
raindrop image by using a denoising generator.  In [9], a faster 
rain removal approach is proposed using a pixel-wise filtering 
technique on a CNN model. Zhang and Patel [13] estimated 
the density of an rainy image using an residual CNN 
architecture and then used that information in rain removal. 
Most of these approaches are used GAN as their major deep 
learning architecture. Since GANs are having two 
subnetworks with different loss functions, these raindrop 
removal approaches are facing non-convergence problem and 
hence their performances are limited at a level.  

Another set of researchers proposed various deep learning 
based models for rain streak removal. Fu et al.,[14] included 
several image filtering techniques in a CNN model to train the 
architecture. A novel spatial attentive CNN model is used in 
[16]. Wei et al., [17] trained a transfer learning based GAN 
model, called as DerainCycleGAN, in unsupervised manner. 
Similar to this approach, a semi-supervised approach is 
proposed in [20] using synthetic and non-synthetic images. 
Another semi-supervised approach is proposed in [24] with 
similar CNN model and a distillation network. In [18], rain 
streaks removal is considered as a multiple streak layer 
removal problem, based on their size and orientation, and then 
a recurrent neural network is used in removal process. Fan et 
al.,[19] used a cascade CNN model architecture in rain streak 
removal. Wang et al., [23] modelled the physical characterises 
of rain streaks and then combined it with a CNN model in an 
end-to-end manner. Yasarla and Patel [25] proposed an 
approach by measuring the location information of rain 
streaks and then trained a CNN model.  

C. Identified Research Gap in Existing Approaches 

Deep learning based raindrop and rain streaks removal 
approaches showed excellent rain removal performances in 
benchmark datasets than the filter and prior based approaches 
because of their hierarchical learning capability. However, 
most of these approaches are suitable for either raindrop 
removal or rain streak removal and not suitable to remove 
both. In addition, since a massive dataset is not available so 
far, data deficiency is the major issue to train deeper models 
and hence they are struggling to optimize their models with 
fewer number of samples. Moreover, most of the CNN based 
models produces rain-free images with unnatural colours 
since they lost the spatial information in deeper convolutional 
layers. Based on these issues, most of the approaches are not 
able to output a high quality rain-free image beyond some 
extent.   



III. METHODOLOGY  

We have proposed a dual CNN model architecture for 
single image raindrop and rain streak removal. The proposed 
architecture consumes two forms of a same input image 
through two CNN branches and then produces a rain-free 
image with realistic colours and better visibility. In the first 
branch, a raw rainy image is fed and then processed by an 
encoder-decoder CNN architecture. Simultaneously, a 
weighted median filter and then a guided filter are used to 
remove the low frequency noise components in the same input 
image and then the obtained output is fed to the second CNN 
branch. A dense CNN architecture is used in the second 
branch. The first and second CNN branches are objective to 
restore the details and enhance the realistic colours, 
respectively. In both branches, skip connections are 
introduced to keep the spatial information of rainy image and 
to optimize the model with a smaller number of training 
samples.  Finally, outputs of both branches are fused and then 
a convolutional layer is used to produce the final output image 
with better visibility and more natural colours. The block 
diagram of the proposed CNN model is shown in Fig.2.  Each 
step of the proposed method is explained in the following 
sections.  

A. Image enhancement with Weighted Median and Guided 

Filters 

We have used the guided filter to remove the low 
frequency components of a rainy image by considering the 
raindrops and rain streaks pixels as noises. In this process, a 
weighted median guided filter is used to enhance the visibility 
and quality of a rainy images without damaging the 
geometrical details. As the first step of enhancement, a 
weighted median filter is applied with the window size of 3 × 
3. Based on the maximum and minimum pixels values of the 
window, noisy pixel is identified and then its pixel value is 
replaced by the weighted median value of that window. 
Suppose several noisy pixels are identified, then the size of 
window is increased to 5 × 5 and then the median pixel value 
is obtained. Although, the median filtering process removes 
the tiny noises in a rainy image, some texture information and 
edge details are also removed.  

In the second part of the image enhancement, we have 
used the guided filter [36] to recover the missing texture and 
edge details in the median filtered image.  The raw rainy 
image and median filtered image are fed to the guided filter as 
the input and guided images, respectively. The guided filter 
produces the output image with sharp edges by filtering the 
input image based on the structure of the guidance image. The 
guided filtered image is fed to the second branch of the 
proposed CNN architecture since it has more sharpen edges 
and natural colours than the raw image.  

B. Proposed CNN Model Architecture 

Proposed architecture has two CNN branches and it 
consumes raw rainy image and corresponding enhanced 
image by an encoder-decoder branch and a dense CNN 
network branch, respectively. As illustrated in Fig.2, both 
input images are resized to 224 × 224 × 3 and then fed to the 
CNN model architecture to produce an output with the same 
size.  

We have used the encoder-decoder CNN branch to 
generate the pixel values of the output rain-free image. In this 
branch, the encoder network is objective to capture the 
discriminative features of the rainy image and then the 

Raw rainy image 

224× 224 ×3 

224× 224 ×3 

Enhanced rainy Image 

224× 224 ×3 

Output rain-free image 

Dense Block1 Dense Block2 

EBlock1 EBlock2 EBlock3 DBlock1 DBlock2 DBlock3 

Fig.2: Block diagram of the proposed CNN model architecture. Raw rainy image is fed by encoder and decoder (denoted as EBlock and DBlock, respectively) 
network branch and guided fitter based enhanced image is fed via Dense CNN branch. Skip connections (denoted as orange lines) are introduced in both 

branches to optimize the model with fewer samples. Finally, outputs of both branches are fused and then a convolutional layer is used to produce the final 

output image. ⊕and ⨀ symbols are denoting element -wise addition and concatenation operations, respectively. 

Conv 

Fig.3: Top: Diagram of an Encoder block, Bottom: Block diagram of a 

decoder block. Convolutional and De-convolutional (transposed 

convolutional) layers are denoted as Conv and De-conv, respectively.  



decoder network is objective to project the learnt features in 
pixel space. The proposed encoder-decoder network branch 
has three encoder blocks and three decoder blocks. The block 
diagram of an encoder and decoder blocks are shown in Fig.3. 
We have used five convolutional layers in encoder blocks and 
same number of de-convolutional (transposed convolutional) 
layers in the decoder block. In both blocks, a 3 × 3 kernel is 
used to capture the features in each layer with the stride size 
of 1. We kept 32 channels in each convolutional and de-
convolutional layer of both blocks. We have utilized the ReLU 
function to activate the features in these layers. At the end of 
each encoder blocks, a max Pooling layers is used to eliminate 
the minor details and noises of the features. The total number 
of encoder-decoder blocks are set experimentally based on the 
validation results.  

 We have used the dense CNN blocks in the second branch 
of the proposed model architecture. This branch is objective 
to produce the rain-free image with natural and realistic 
colours. Similar to the encoder blocks, five convolutional 
layers are included in each dense block. To enable faster and 
independent learning, batch normalization layer is placed in 
between the convolutional layers. A 3 × 3 kernel is used in 
these blocks with the filter size of 32. In this branch, total 
number of dense blocks are identified based on the validation 
results.  

In both branches of the proposed CNN model architecture, 
external skip connections are introduced in between encoder-
decoder blocks and in between dense blocks as shown in 
Fig.2. Moreover, internal skip connections are introduced in 
between individual layers of encoder-decoder blocks and 
dense blocks as shown in Fig.3 and Fig.4, respectively. In 

these blocks, the 𝑛𝑡ℎ  layer consumes all previous layers’ 
feature maps and concatenate them along the channel 
dimension.  Then an activation function is used to obtain the 
output feature map of that layer. Because of this internal and 
external skip connections, proposed CNN model is able to 
optimize with fewer number of samples and able to preserve 
the spatial information in deeper layers.  

In the deeper part of the proposed CNN model 
architecture, outputs of both branches are fused by an element-
wise addition operation. Then a single convolutional layer is 
used to learn the combined features and then to produce final 
output image.  

C. Training 

As the first step of training, all the hyper parameters are 
finetuned such as batch size, filter size, number of blocks, 
number of layers in a block, and learning rate. Then, we have 
trained the proposed model for a fixed number of iterations 
and the best performing model was identified based on the 
validation accuracy. In each training iteration, the loss 
between obtained output rain-free image ( 𝐼𝑜𝑢𝑡 ) and 

corresponding reference image (𝐼𝑟𝑒𝑓) is calculated as follows:  

 Loss =
1

224 × 224
 ∑ ∑[𝐼(𝑖,𝑗) 

𝑜𝑢𝑡 − 𝐼(𝑖,𝑗) 
𝑟𝑒𝑓

]2

224

𝑗=1

224

𝑖=1

 (2) 

IV. RESULTS AND DISCUSSION 

A. Implementation Details 

The Google Colab cloud platform is used to develop the 
code and Keras-TensorFlow library is utilized.  The Adam 
optimizer is used in the training and the model is trained for 
100 iterations with the batch size of 32. The code is uploaded 
at https://github.com/RPRO5/Derain 

B. Details of the Benchmark Datasets 

Similar to other researchers, the proposed model is trained 
and tested on publicly available benchmark datasets such as 
Rain100H[27], Rain100L[27], Rain12[37], and RainDrop 
dataset[4]. All of these datasets are having a raindrop or rain 
streak image and the corresponding reference rain-free image. 
The details of these benchmarks are summarized in Table 1 
and same samples are shown in Fig.5.  

TABLE 1: DETAILS OF THE BENCHMARK DATASETS USED IN THIS STUDY 

Dataset No. of Images Type Resolution  

Rain12 12 Rain Streak 481 × 321 

Rain100H 1800 Training, 200 
Testing 

Rain Streak 481 × 321 

Rain100L 1800 Training, 200 

Testing 

Rain Streak 481 × 321 

RainDrop 861 Training , 307 
Testing 

Raindrop 720 × 480 

C. Evaluation Metrices  

We have used two different metrices to evaluate the 
performance of the proposed model. The first metric is 
Structural Similarity Index (SSIM) and its gives high score 
whenever the output image (𝐼𝑜𝑢𝑡) is closer to the reference 

image (𝐼𝑟𝑒𝑓). It is calculated as follows:  

 SSIM =  
(2µ𝑟µ𝑜 + 𝐶1 )(2𝜎𝑟𝑜 + 𝐶2 )

(µ𝑟
2 + µ𝑜

2 +  𝐶1 )(𝜎𝑟
2 + 𝜎𝑜

2 + 𝐶2 )
 (3) 

where µ𝑟 and µ𝑜  are the mean of reference image and 
output image, respectively. 𝜎𝑜

2 and 𝜎𝑟
2 are the variance of the 

output and reference images, respectively. 𝐶1 and 𝐶2 are the 
variables. The second metric is Peak Signal-to-Noise Ratio 
(PSNR) and also gives higher values when an output is in high 
quality. PSNR score is calculated as follows:  

 PSNR =  10 𝑙𝑜𝑔10  (
𝑀𝐴𝑋

𝐼𝑟𝑒𝑓
2

𝑀𝑆𝐸
). (4) 

Fig. 4: Diagram of a Dense CNN block. BN and ReLU are denoting batch 

normalization layer and Rectified Linear Unit activation function.  Fig. 5: Rainy image and corresponding reference image pairs of benchmark 

datasets. (first row - first column): RainDrop benchmark, (first row - second 
column): Rain100L benchmark, (second row - first column): Rain12 

benchmark, and (second row second column): Rain100H benchmark. 

https://github.com/RPRO5/Derain


where 𝑀𝑆𝐸 is the Means Square Error and it is calculated 

as stated in Equation 1 and 𝑀𝐴𝑋𝐼𝑟𝑒𝑓 represents the maximum 

pixel value of the reference image.   

D. Testing Results 

Performance of the proposed approach is evaluated on the 
test set of benchmark datasets and then compared with the 
state-of-the-art approaches. To compare the results with other 
researchers, we have used the same set of test images in 
evaluation from each datasets as stated in Table 1. Since there 
are no datasets available to evaluate the raindrops removal and 
rain streak removal performances together in a single image, 
we have evaluated the performance of proposed method in 
raindrop and rain streak removal benchmarks individually 
without changing any model parameters.  Raindrop removal 
performance of the proposed approach is evaluated and 
compared on RainDrop dataset, and the results are 
summarized in Table 2.  

TABLE 2: PERFORMANCE COMPARISON ON RAINDROP BENCHMARK 

Approach SSIM PSNR 

Ours 0.95 32.60 

Lin et al., [5] 0.93 30.79 

Kaihao et al., [31] 0.93 30.63 

Liu et al., [30] 0.92 31.24 

Duc et al., [6] 0.92 31.56 

Duc et al., [12] 0.92 31.57 

Hao et al., [7] 0.91 30.17 

Qian et al., [4] 0.90 29.57 

Horia et al., [8] 0.90 31.55 

Ren et al., [29] 0.90 29.46 

Qiag et al., [9] 0.90 28.48 

Fu et al., [28] 0.84 25.23 

Yang et al., [27] 0.82 27.52 

He et al., [13] 0.80 24.76 

Li et al., [26] 0.78 24.85 

Zhang et al., [10] 0.73 21.35 

Rain streak removal performance of the proposed method 
is given in Table 3 based on the test results on Rain100H, 
Rain100L, and Rain12 datasets. Same set of test images are 
used in this comparison.  

TABLE 3: PERFORMANCE COMPARISON ON RAIN STREAK BENCHMARKS 

Approach Rain100H Rain100L Rain12 

SSIM PSNR SSIM PSNR SSIM PSNR 

Ours 38.91 0.98 38.91 0.98 37.46 0.97 

[29] 37.45 0.97 37.45 0.97 36.66 0.96 

[27] 36.61 0.97 36.61 0.97 33.92 0.95 

[22] 31.27 0.94 39.95 0.97 - - 

[13] 29.45 0.93 37.41 0.95 - - 

[28] 32.38 0.93 32.38 0.93 34.04 0.93 

[25] 25.93 0.85 36.34 0.97 - - 

[19] 25.25 0.84 33.16 0.96 29.45 0.94 

[16] 25.11 0.83 35.33 0.97 35.85 0.96 

[14] 15.33 0.74 30.24 0.93 31.24 0.94 

[20] 22.47 0.72 32.37 0.93 34.02 0.93 

[24] 17.51 0.62 25.93 0.72 - - 

[23] 18.21 0.54 27.52 0.76 - - 

[17] 17.91 0.53 29.75 0.84 35 0.96 

[21] 14.62 0.45 28.54 0.85 33.1 0.93 

[26] 15.05 0.43 28.66 0.86 32.02 0.86 

[15] 13.77 0.32 27.34 0.85 30.07 0.87 

E. Discussion  

It is clearly seen that proposed method outperforms the 
existing raindrop and rain streak removal approaches in 
publicly available benchmark datasets. It gains the rain-
removal knowledge from a dual CNN architecture. To justify 

the design of the architecture, we have evaluated the 
performance of individual branches in the RainDrop dataset 
and reported the results in Table 4.   

TABLE 4: PERFORMANCES OF INDIVIDUAL BRANCHES 

CNN Architecture  SSIM PSNR 

Encoder-Decoder Branch only 0.83 28.62 

Dense Block Branch only 0.89 30.76 

Proposed Architecture with both branches 0.95 32.60 

Based on the results, we can clearly see that Dense block 
branch contributed more than the encoder-decoder branch in 
the proposed model architecture. In addition, it is seen that the 
combined dual CNN architecture produces better results than 
the individual branches. We have also evaluated the 
performances of skip connections in the blocks of these 
branches and the results are reported in Table 5.  

TABLE 5: COMPARISIONS OF SKIP CONNECTIONS 

CNN Architecture  SSIM PSNR 

Dual CNN architecture without any skip connections 0.81 28.28 

Dual CNN architecture with internal skip 

connections 

0.86 29.39 

Dual CNN architecture with internal and external 

skip connections 
0.95 32.60 

Based on the results, we can understand that internal and 
external skip connections in the blocks of these branches are 
used to increase the performance significantly.  In addition to 
this quantitative comparison, qualitative performance of 
proposed method is tested on few real-world images which are 
having the raindrops and rain streaks together. As shown in 
Fig.6, proposed model is successfully able to remove the 
raindrops and rain streaks in a single image and produces the 
output with high visibility and natural colours.  

V. CONCLUSION   

In this study, we have proposed a dual CNN architecture 
for raindrop and rain streak removal. Since most of the 
previous approaches are focused on either raindrop removal 
or rain streak removal, this study objective to develop a model 
to handle the both issues. The proposed CNN model 
architecture has two branches: encoder-decoder network, and 
dense block network. We fed raw rainy image and its 
enhanced image in these branches and then their outputs are 
fused to obtain a high-quality rain-free image with more 
realistic colours. Proposed approach trained and tested on 
RainDrop, Rain100H, Rain100L, and Rain12 benchmarks 

Fig. 6: First row: Real-world images which are having raindrops and 

rain streaks together, Second row: Corresponding outputs of the 

proposed model. 



datasets and showed 0.95, 0.98, 0.98, and 0.97 of structural 
similarity indexes, respectively. Qualitative evaluation on 
some real-world images showed that the proposed model 
significantly removed the rain drops and rain streaks together 
from the single images by combining the outputs of encoder-
decoder network and dense CNN blocks.  
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