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Abstract

In this paper, an alternative mixed Poisson distribution is proposed by amalgamating Poisson
distribution and a modification of the Quasi Lindley distribution. Some fundamental structural properties
of the new distribution, namely the shape of the distribution and moments and related measures, are
explored. It was noted that the new distribution to be either unimodal or bimodal, and over-dispersed.
Further, it has a tendency to accommodate various right tail behaviors and variance-to-mean ratios. Its
unknown parameter estimation by using the maximum likelihood estimation method is examined by a
simulation study based on the asymptotic theory. Finally, two real-world data sets are used to illustrate
the flexibility and potentiality of the new distribution.

Keywords: over-dispersion, mixed Poisson distribution, Lindley distribution, Quasi Lindley
distribution, goodness of fit.

1. Introduction

Most of the real-world applications, especially, reliability, actuarial, biomedical, engineering,
ecological sciences, and among others, the variable of interest is in the form of count data. The
Poisson distribution is a standard tool to model the count data if the empirical and theoretical
properties satisfy the related underline assumptions. A random variable X is said to have a
Poisson distribution with parameter λ if both the E(X) and Var(X) of the distribution equal to the
parameter λ. This property is commonly known as equidispersion. Even though its probability
mass function (pmf) is very flexible to compute its probabilities, in some real-world applica-
tions the Poisson distribution fails to match empirical observations. Here the variance of the
observed data exceeds the theoretical variance. This phenomenon is explained as over-dispersion
or variation inflation (Greenwood and Yule, 1920). The over-dispersion occurs by the failure of
the basic assumptions of the Poisson distribution. The reasons might be by phenomena of the
clustered structure of the population or population is heterogeneous, and heavy right tail that
cannot accommodate by the Poisson distribution (McCullagh et al., 1989; Ridout et al., 1998). The
heterogeneity of a population is determined by the Poisson parameter λ which differs individ-
ual to individual, and then the Var(X) = τE(X); (τ > 1), where τ is called the index of dispersion.

The mixed Poisson distributions are well-known flexible modeling methods to explain the
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heterogeneity of the Poisson parameter as well as heavy right tail behaviors (Feller,1943; Shaked,
1980). The mixed Poisson distribution is a resultant distribution or unconditional distribution
by assuming that the Poisson parameter is a random variable that has as a parameterized dis-
tribution P. The distribution P and its parameter vector Θ are called prior distribution and
hyperparameter, respectively. Then, the resultant distribution of the random variable X can be
expressed mathematically in the following form

fX(x) =
∫ ∞

0
fX|Λ(x|λ) f P

Λ(λ)dλ, (1)

where X|Λ has a Poisson distribution with parameter λ as

fX|Λ(x|λ) = e−λλx

x!
, x = 0, 1, 2, ..., λ > 0, (2)

Λ is the random variable of the Poisson parameter λ, and f P
Λ(λ) is the density function of the

assumed continuous distribution P to the Poisson parameter λ. Hence, the random variable X
has the same support of X|Λ with parameter(s) of the prior distribution. Further, Lynch (1988)
showed that the form of the mixing distribution has ascendancy over to the form of the resultant
mixed distribution.

In literature, researchers assumed the standard lifetime distributions to model the Poisson
parameter λ as a classical approach. Greenwood and Yule (1920) used the gamma distribution,
and the resultant distribution is negative binomial (NBD). Johnson et al., (1992) assumed the ex-
ponential distribution to model the Poisson parameter, and the resultant distribution is geometric
distribution (GD). Even though NBD and GD are computationally flexible pmfs, they are not
befitting distributions for a higher value of τ and long right tail. In this context, researchers have
assumed several modifications of the standard lifetime distributions for the Poisson parameter.
They were modified to have more flexibility in their shapes and failure rate criteria than the
standard lifetime distributions. Confluent Hypergeometric series, Gamma product ratio, General-
ized gamma, Shifted gamma, Inverse gamma, and Modified Bessel of the 3rd kind are used by
Bhattacharya (1967), Irwin (1975), Albrecht (1984), Ruohonen (1988), Willmot (1993), and Ong and
Muthaloo (1995), respectively to model the Poisson parameter. The pmfs of such distributions are
derived through the recursive formulas or Laplace transform technique, or by using the special
mathematical functions. Hence, computing the probabilities of such distributions is complicated
and they are limited in practice.

The Lindley distribution (LD) is one of the life time distributions introduced by Lindley (1958)
having the density function

fΛ(λ) =
θ2

1 + θ
(1 + λ)e−θλ , λ > 0, θ > 0, (3)

where θ is the shape parameter, and Λ is the respective random variable. Equation (3) presents a
two-component mixture of two different continuous distributions namely exponential (θ) and

gamma (2, θ) distributions with the mixing proportion, p =
θ

1 + θ
. Sankaran (1970) introduced

the one-parameter discrete Poisson-Lindley distribution (PLD) by combining the Poisson and LD.
Its pmf is given as

fX(x) =
θ2(x + θ + 2)
(θ + 1)x+3 , x = 0, 1, 2, ..., θ > 0. (4)

Note that the pmf of the PLD is an explicit form. Then, obtaining its probabilities is computa-
tionally flexible. However, the PLD flexibility is limited to fit various types of the over-dispersed
count data sets since it has only one parameter. Then, as an alternative to PLD, Bhati et al.
(2015) have obtained the Generalized Poisson-Lindley distribution (GPLD), where the Poisson
parameter is distributed to Two-parameter Lindley distribution (Shanker et al., 2013b); Wongrin
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and Bodhisuwan (2016) introduced Poisson-generalized Lindley distribution (PGLD), which was
obtained by mixing the Poisson distribution with the generalized Lindley distribution (Elbatal et
al., 2013); Grine et al. (2017) have obtained the Quasi-Poisson distribution (PQLD) by modeling
Poisson parameter to Quasi Lindley distribution (Shanker et al., 2013a). Table 1 summarizes the
mixing proportions, mixing components, and parameters of the above continuous distributions
that have been used to model the Poisson parameter. We can see that the mixing proportions
of the Two-parameter Lindley and generalized Lindley distributions are incorporated with the
scale parameter, θ of the mixing components. Further, the shape parameter of the mixing
component gamma (2, θ) is fixed with value 2 for the Two-parameter Lindley and the Quasi
Lindley distributions. These settings of such mixing distributions may limit the flexibility of the
above-mentioned Poisson mixtures to fit well for the various types of the right tail heaviness and
τ for an over-dispersed count data (Tharshan and Wijekoon, 2020 a b).

Table 1: Mixing proportions, mixing components, and parameters of some modified-Lindley distributions.

Distribution Mixing proportion Mixing components Parameters
shape scale

Two-parameter Lindley
θ

θ + α
exponential (θ) , gamma (2, θ) θ, α

Generalized Lindley
θ

1 + θ
gamma (α, θ) , gamma (β, θ) θ, α, β

Quasi Lindley
α

α + 1
exponential (θ) , gamma (2, θ) θ α

The main contribution of this paper is to propose an alternative mixed Poisson distribution
for over-dispersed count data to address the above issues. It is obtained by mixing the Poisson
distribution and the Modification of the Quasi Lindley distribution (MQLD) (Tharshan and
Wijekoon, 2021). The density function of the MQLD(θ, α, δ) is given as

fΛ(λ; θ, α, δ) =
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
; λ > 0, θ > 0, α3 > −1, δ > 0, (5)

where α, and δ are shape parameters, θ is a scale parameter, and Λ is the respective random
variable. Equation (5) presents the mixture of two non-identical distributions, exponential (θ) ,

and gamma (δ, θ) with the mixing proportion, p =
α3

α3 + 1
. We can clearly observe that its mixing

proportion p does not incorporate with scale parameter, θ of the mixing components. Further, the
shape parameter of the mixing component gamma distribution, δ is not fixed with a value. The
authors have shown that these settings of the MQLD provide the capability to capture the various
ranges of right tail heaviness measured by excess kurtosis (kurtosis -3), horizontal symmetry
measured by skewness, and heterogeneity measured by Fano factor (variance-to-mean ratio) by
setting its parameter values. Further, its density function can be either unimodal or bimodal.

The remaining part of this paper is organized as follows: In section 2, we introduce the PMQLD
with its explicit forms of the probability mass and distribution functions. Its fundamental
structural properties are discussed in section 3. The simulation of its random variables and
parameter estimations are discussed in section 4. Finally, a simulation study is done to examine
the performance of parameter estimation by using the maximum likelihood estimation method,
and some real-world examples are taken to show the applicability of the proposed model by
comparing it with some other existing Poisson mixtures, NBD, GD, PLD, GPLD, PQLD, PGLD.
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2. Formulation of the new mixed Poisson distribution

In this section, we introduce the new mixed Poisson distribution with its pmf and cumulative
distribution function (cdf).

Let the random variable X represent the total counts of a specific experiment with mean λ.
Then, the traditional distribution to calculate probabilities of such outcomes is the Poisson dis-
tribution. The PMQLD is obtained by mixing the Poisson and MQLD (Tharshan and Wijekoon,
2021) for over-dispersed count data. The following theorem gives the pmf of the PMQLD.

Theorem 1. Let X|Λ is a random variable that follow the Poisson distribution with parameter
λ, abbreviated as X|Λ ∼ Poisson (λ) and the Poisson parameter Λ ∼ MQLD (θ, α, δ). Then, the
pmf of the PMQLD is defined as

fX(x) =
θ

(
Γ(δ)Γ(x + 1)α3(1 + θ)δ−1 + θδ−1Γ(x + δ)

)
x!(α3 + 1)(1 + θ)x+δΓ(δ)

, x = 0, 1, 2, ..., θ > 0, δ > 0, α3 > −1. (6)

Proof. Since X|Λ ∼ Poisson (λ) and Λ ∼ MQLD (θ, α, δ), the unconditional distribution of X
can be obtained by substituting equations (2) and (5) in equation (1) as below

f (X) =
∫ ∞

0

e−λλx

x!
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
θ

x!(α3 + 1)Γ(δ)

(
Γ(δ)α3

∫ ∞

0
e−λ(1+θ)λxdλ + θδ−1

∫ ∞

0
λx+δ−1e−λ(1+θ)dλ

)

=
θ

x!(α3 + 1)Γ(δ)

(
Γ(δ)α3Γ(x + 1)
(1 + θ)x+1 +

θδ−1Γ(x + δ)

(1 + θ)x+δ

)

=
θ

x!(α3 + 1)Γ(δ)(1 + θ)x+δ

(
(1 + θ)δ−1Γ(δ)α3Γ(x + 1) + θδ−1Γ(x + δ)

)
.

■
Remarks:

1. Equation (6) presents a two-component mixture of GD( θ
1+θ ) and NBD(δ, 1

1+θ ) with the

mixing proportion p = α3

α3+1 .

2. For α → 0, the PMQLD reduces to the NBD(δ, 1
1+θ ).

3. For α → ∞, the PMQLD reduces to the GD( θ
1+θ ).

The right tail behaviors of the PMQLD for different values of θ, α, and δ are illustrated in Figure
1. For fixed α and δ, it is clear that the distribution’s right tail approaches to zero at a faster
rate when θ increases. For fixed θ and δ, and when α is increasing, the distribution’s right tail
approaches to zero at a slower rate when compared with the changes of θ. Further, for fixed θ
and α, and when δ is increasing, the distribution captures more right tail. From Figure 2, we may
note that the PMQLD may be a bimodal distribution when parameter value δ is very different
(higher value) from the parameter values of θ and α.

The corresponding cumulative distribution function of PMQLD is given as

FX(x) =
x

∑
t=0

f (x)
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=
δ(1 + θ)δ−1Γ(δ)α3Γ(x + 1)((1 + θ)x+1 − 1) + θδΓ(x + δ + 1)2F1(1, x + δ + 1; δ + 1; θ

1+θ )

(α3 + 1)Γ(δ)x!δ(1 + θ)x+δ+1 (7)

, x = 0, 1, 2, ..., θ > 0, δ > 0, α3 > −1,

where 2F1(c, d; r; w) is the Gaussian hypergeometric function defined as

2F1(c, d; r; w) =
∞

∑
i=0

(c)i(d)iwi

(r)ii!
,

which is a special case of the generalized hypergeometric function given by the expression

aFb(p1, p2, ...pa; q1, q2, ...qb; w) =
∞

∑
i=0

(p1)i...(pa)iwi

(q1)i...(qb)ii!
,

and (p)i =
Γ(p+i)

Γ(p) = p(p + 1)...(p + i + 1) is the Pochhammer symbol.
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Figure 1: The probability mass function of the PMQLD at different parameter values of θ, α,and ,δ

3. Statistical properties of PMQLD

In this section, we present some important statistical properties of the PMQLD such as the shape
of the distribution, moments and related measures, probability and moment generating functions,
and quantile function.
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Figure 2: Some bimodal distributions of the PMQLD

3.1. Shape of the distribution

From (6) we can easily derive f (0) = θ((1+θ)δ−1α3+θδ−1)
(α3+1)(1+θ)δ , and limx→∞ f (x) = 0.

The recurrence relation for probabilities is given by

f (x + 1)
f (x)

=
A

(x + 1)(1 + θ)B
; x = 0, 1, 2, ..., (8)

where A = (1 + θ)δ−1Γ(δ)α3Γ(x + 2) + θδ−1(x + δ)Γ(x + δ), and

B = (1 + θ)δ−1Γ(δ)α3Γ(x + 1) + θδ−1Γ(x + δ)).

The PMQLD(θ, α, δ) has a log-concave probability mass function when

∆η(x) =
f (x + 1)

f (x)
− f (x + 2)

f (x + 1)
> 0, ∀x (Gupta et al., 1997)

⇒ (x + 2)A2

(x + 1)
(
(1 + θ)δ−1Γ(δ)α3Γ(x + 3) + θδ−1Γ(x + δ + 2)

)
B
> 1.

Under this condition, the distribution represents a unimodal distribution. Further, by using (8), it
can be shown that

(i) For (1 + θ)δ−1α3 + θδ−1δ < (1 + θ)((1 + θ)δ−1α3 + θδ−1), equation (6) has unique mode at
X = 0.

(ii) Equation (6) has a unique mode at X = x0, for

(1 + θ)δ−1Γ(δ)α3Γ(x0 + 2) + θδ−1(x0 + δ)Γ(x0 + δ)

(x0 + 1)(1 + θ)

(
(1 + θ)δ−1Γ(δ)α3Γ(x0 + 1) + θδ−1Γ(x0 + δ)

) < 1,

and

38



Ramajeyam Tharshan, Pushpakanthie Wijekoon
A NEW MIXED POISSON DISTRIBUTION

RT&A, No 1 (67)
Volume 17, March 2022

(1 + θ)δ−1Γ(δ)α3Γ(x0) + θδ−1Γ(x0 + δ − 1)

x0(1 + θ)

(
(1 + θ)δ−1Γ(δ)α3Γ(x0 + 1) + θδ−1Γ(x0 + δ)

) < 1.

(iii) Equation (6) has two modes at X = x0 and X = x0 + 1, for

(1 + θ)δ−1Γ(δ)α3Γ(x0 + 2) + θδ−1(x0 + δ)Γ(x0 + δ)

= (x0 + 1)(1 + θ)((1 + θ)δ−1Γ(δ)α3Γ(x0 + 1) + θδ−1Γ(x0 + δ)).

The above facts are also shown in Figures 1 and 2 at different parameter settings.

Further, the PMQLD(θ, α, δ) has a log-convex probability mass function when ∆η(x) ≤ 0:

⇒ (x + 2)A2

(x + 1)
(
(1 + θ)δ−1Γ(δ)α3Γ(x + 3) + θδ−1Γ(x + δ + 2)

)
B
≤ 1.

3.2. Survival and hazard rate functions

The survival/reliability function is associated with the probability of a system that will survive
beyond a specified time. The survival function of the PMQLD is defined as

S(x) = 1 − F(x) = 1 −
β1 + θδΓ(x + δ + 1)2F1(1, x + δ + 1; δ + 1; θ

1+θ )

β2
(9)

where β1 = δ(1 + θ)δ−1Γ(δ)α3Γ(x + 1)((1 + θ)x+1 − 1) and β2 = (α3 + 1)Γ(δ)x!δ(1 + θ)x+δ+1.
The hazard rate function (hrf) is the instantaneous failure rate. The hrf of the PMQLD is defined
as

h(x) = lim∆x→0
P(x < X < x + ∆x|X > x)

∆x

=
f (x)
S(x)

=

δθ(1 + θ)

(
(1 + θ)δ−1Γ(δ)α3Γ(x + 1) + θδ−1Γ(x + δ)

)
β1 − (β2 + θδΓ(x + δ + 1)2F1(1, x + δ + 1; δ + 1; θ

1+θ ))
. (10)

Figure 3 provides an illustration of the possible shapes of the PMQLD’s hazard rate function at
different shape parameter values. According to these illustrations, it is clear that the proposed
model has the capability to model the bathtub, monotonic increasing, and decreasing failure rate
shapes.

3.3. Moments and related measures

The central tendency, horizontal symmetry, tail heaviness, and dispersion are important character-
istics of a distribution. These characteristics can be studied by using the moments. The following
theorem provides the rth factorial moment of the PMQLD.

Theorem 2. Let X ∼PMQLD(θ, α, δ), then the rth factorial moment of X is given as

µ
′
(r) =

Γ(δ)Γ(r + 1)α3 + Γ(δ + r)
(α3 + 1)Γ(δ)θr . (11)

Proof.

µ
′
(r) = E(Πr−1

i=0 (X − i))
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Figure 3: The hazard rate function at different values of α, and δ

=
∞

∑
x=0

x(r)
∫ ∞

0

e−λλx

x!
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
∫ ∞

0
λr θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
θ

(α3 + 1)Γ(δ)

(
Γ(δ)α3Γ(r + 1)

θr+1 +
Γ(δ + r)

θr+1

)

=
Γ(δ)Γ(r + 1)α3 + Γ(δ + r)

(α3 + 1)Γ(δ)θr .

■
Then, the first four raw moments of X can be derived by the following relationship

µ
′
r = E(xr) =

r

∑
i=0

S(r, i)µ
′
(i) ; r = 1, 2, ...,

where S(r, i) is the Stirling numbers of the second kind, and it is defined as

S(r, i) =
1
i!

i

∑
j=0

(−1)i−j
(

i
j

)
jr , 0 < i < r.

Let

κ1 = α3 + δ, κ2 = 2α3 + δ(δ + 1), κ3 = 6α3 + δ(δ + 1)(δ + 2), κ4 = 24α3 + δ(δ + 1)(δ + 2)(δ + 3).

Then,
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µ
′
1 =

κ1

(α3 + 1)θ
= µ , µ

′
2 =

θκ1 + κ2

(α3 + 1)θ2 , µ
′
3 =

θ2κ1 + 3θκ2 + κ3

(α3 + 1)θ3 , µ
′
4 =

θ3κ1 + 7θ2κ2 + 6θκ3 + κ4

(α3 + 1)θ4 .

Further, the rth-order moments about the mean can be obtained by using the relationship between
moments about the mean and moments about the origin, i.e.

µr = E

[
(Y − µ)r

]
=

r

∑
i=0

(
r
i

)
(−1)r−iµ

′
iµ

r−i; r = 1, 2, ....

Therefore, the variance of X, σ2 and index of dispersion, γ1 are derived as

σ2 = µ2 =
α6(1 + θ) + α3(2 + θ + δ(θ + δ − 1)) + δ(θ + 1)

(α3 + 1)2θ2 =

µ + µ2
(

α3(α3 + 2 + δ(δ − 1)) + δ

(α3 + δ)2

)
,

and

γ1 =
µ2

µ
′
1
= 1 +

α3(α3 + 2 + δ(δ − 1)) + δ

(α3 + 1)(α3 + δ)θ
,

respectively. It is clear that the γ1 > 1. Then, the PMQLD is an over-dispersed distribution. Since
the mathematical expressions of µ3 and µ4 are very long, we present the graphical presentations

of the skewness (γ2) =
µ3

(µ2)3/2 and kurtosis (γ3) =
µ4

µ2
2

of the PMQLD in Figure 5. The surface

plots in Figures 4, and 5 show some possible values of the index of dispersion, skewness, and
kurtosis that can be accommodated by the PMQLD at different settings of the parameters. Hence,
these plots indicate that the PMQLD (θ, α, δ) has the capability to accommodate various ranges of
the index of dispersion, skewness, and kurtosis at different sets of parameters for over-dispersed
count data.
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Figure 4: Surface plots for the index of dispersion at different values of θ, α, and δ
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Figure 5: Surface plots for the skewness and kurtosis functions at different values of θ, and α

3.4. Probability and moment generating functions

The characteristics of a probability distribution are directly associated with its probability gener-
ating function (pgf) and the moment generating function (mgf). The following theorem provides
the pgf of the PMQLD.

Theorem 3. The pgf, G(t) = E(tX), X ∼PMQLD(θ, α, δ) is given as

G(t) =
θ(α3(1 − t + θ)δ−1 + θδ−1)

(α3 + 1)(1 − t + θ)δ
, t ∈ R. (12)

Proof.

G(t) = E(tX)

=
∞

∑
x=0

tX
∫ ∞

0

e−λλx

x!
θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
∫ ∞

0
e−λ(1−t) θe−θλ

(α3 + 1)Γ(δ)

(
Γ(δ)α3 + (θλ)δ−1

)
dλ

=
θ

(α3 + 1)Γ(δ)

(
Γ(δ)α3

∫ ∞

0
e−λ(1−t+θ)dλ + θδ−1

∫ ∞

0
e−λ(1−t+θ)λδ−1dλ

)

=
θ(α3(1 − t + θ)δ−1 + θδ−1)

(α3 + 1)(1 − t + θ)δ
.

■
The mgf can be obtained effortlessly from pgf by using the relationship G(et) = E(etX) = MX(t),
and given as

MX(t) =
θ(α3(1 − et + θ)δ−1 + θδ−1)

(α3 + 1)(1 − et + θ)δ
, t ∈ R. (13)

3.5. Quantile function

The quantile function is a useful function to estimate the quantiles. Let us define the quantiles for
random variable X ∼PMQLD(θ, α, δ). The uth quantile can be derived by solving F(xu) = u for
xu, 0 < u < 1. Then, the uth quantile function of the PMQLD is given as

β1(xu) + θδΓ(xu + δ + 1)2F1(1, xu + δ + 1; δ + 1;
θ

1 + θ
)− uβ2(xu) = 0, 0 < u < 1, (14)
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where β1(xu) = δ(1 + θ)δ−1Γ(δ)α3Γ(xu + 1)((1 + θ)xu+1 − 1) and β2(xu) = (α3 + 1)Γ(δ)xu!δ(1 +
θ)xu+δ+1.

Since equation (14) is not a closed-form in xu, the estimates of the quantiles can be evalu-
ated by using any numerical method. Further, the first three quartiles can be calculated by
substituting u = 0.25, 0.50, and 0.75 in equation (14) and solving the respective equations.

4. Simulation and parameter estimation

4.1. Simulation of the random variables

Here, we provide two different algorithms to simulate the random variables x1, x2, ..., xn from the
PMQLD(θ, α, δ) with size n based on the inverse transform method.

The first algorithm is obtained by considering the mixing of the PMQLD. Since X|Λ ∼Poisson
(λ) and Λ ∼MQLD(θ, α, δ), the first algorithm is obtained as follows

Algorithm I:

i Simulate the random variables, ui ∼uniform(0, 1); i = 1, 2, ..., n.

ii Solve the non-linear equation for λi: Γ(δ)(1 + α3(1 − e−θλi ))− Γ(δ, θλi)− ui(α
3 + 1)Γ(δ) = 0

to simulate the random variables, λi ∼MQLD(θ, α, δ); i = 1, 2, ..., n.

iii Simulate xi from Poisson (λi); i = 1, 2, ..., n.

The second algorithm is obtained from the quantile function of PMQLD discussed in subsection
3.5, and the steps are as follows

Algorithm II:

i Simulate the random variables, ui ∼uniform(0, 1); i = 1, 2, ..., n.

ii Solve the non-linear equation for [xui ];
β1(xui ) + θδΓ(xui + δ + 1)2F1(1, xui + δ + 1; δ + 1; θ

1+θ )− uiβ2(xui ) = 0, where β1(xui ) and
β2(xui ) are defined as in section 3.6. [.] denotes the integer part.

4.2. Parameter estimation of PMQLD

In this subsection, we discuss the parameter estimation of the PMQLD by using the method of
moment estimation and the maximum likelihood estimation method.

4.2.1 Method of moment estimation (MME)

Given a random samples x1, x2...xn with size n from the PMQLD(θ, α, δ), the method of moment
estimators of θ, α, and δ, abbreviated as θ̂MME, α̂MME, and δ̂MME, can be evaluated by equating

the raw-moments, say µ
′
r, to the sample moments, say

n

∑
i=1

xr
i

n
, r = 1, 2, 3, i.e. we need to find the

solutions of the following system of non-linear equations:

nκ1 − (α3 + 1)θ ∑n
i=1 xi = 0; n(θκ1 + κ2)− (α3 + 1)θ2 ∑n

i=1 x2
i = 0;

n(θ2κ1 + 3κ2 + κ3)− (α3 + 1)θ3 ∑n
i=1 x3

i = 0,

where κ1, κ2, and κ3 are defined in subsection 3.3. It is clear that these equations are not a closed
form. However, the solutions can be derived by using a numerical method.
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4.2.2 Maximum likelihood estimation (MLE)

Given a random samples x1, x2...xn with size n from the PMQLD(θ, α, δ), the likelihood function
of the ith sample value xi is given as

L(θ, α, δ|x) = θ

xi!(α3 + 1)(1 + θ)xi+δΓ(δ)

(
Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)

)
.

Then, the log-likelihood function is given as

log(L(θ, α, δ|xi)) = l(θ, α, δ|x)

= n
(

log(θ)− log(α3 + 1)− log(Γ(δ))
)
+ ∑n

i=1 log
(

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)

)
− log(xi!)− (xi + δ)log(1 + θ). (15)

The score functions are

∂l(θ, α, δ|x)
∂θ

=
n
θ
+

n

∑
i=1

Γ(δ)Γ(xi + 1)α3(δ − 1)(1 + θ)δ−2 + Γ(xi + δ)(δ − 1)θδ−2

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)
−

n

∑
i=1

xi + δ

1 + θ
,

∂l(θ, α, δ|x)
∂α

=
n

∑
i=1

3α2Γ(δ)Γ(xi + 1)(1 + θ)δ−1

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)
− 3nα2

α3 + 1
,

and

∂l(θ, α, δ|x)
∂δ

=
n

∑
i=1

Γ(xi + 1)α3(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)) + Γ(xi + δ)θδ−1(log(θ) + ψ(xi + δ))

Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ)

−n(log(1 + θ) + ψ(δ)),

where ψ(a) =
∂

∂a
logΓ(a) =

Γ
′
(a)

Γ(a)
. By setting the score functions equal to zero, the maximum

likelihood estimators of θ, α, and δ, abbreviated as θ̂MLE, α̂MLE, and δ̂MLE can be derived. These
systems of non-linear equations can be solved by a numerical method. Here, the solutions of the
parameter estimates will be obtained by using the optim function in the R package stats.

The asymptotic confidence intervals for the parameters θ, α, and δ are derived by the asymptotic
theory. The estimators are asymptotic three-variate normal with mean (θ, α, δ) and the observed
information matrix

I(θ, α, δ) =


−∂2l(θ, α, δ|x)

∂θ2 −∂2l(θ, α, δ|x)
∂θ∂α

−∂2l(θ, α, δ|x)
∂θ∂δ

−∂2l(θ, α, δ|x)
∂α∂θ

−∂2l(θ, α, δ|x)
∂α2 −∂2l(θ, α, δ|x)

∂α∂δ

−∂2l(θ, α, δ|x)
∂δ∂θ

−∂2l(θ, α, δ|x)
∂δ∂α

−∂2l(θ, α, δ|x)
∂δ2


at θ = θ̂MLE, α = α̂MLE, and δ = δ̂MLE, i.e. (θ̂MLE, α̂MLE, δ̂MLE) ∼ N3((θ, α, δ), I−1(θ, α, δ)). The
second order partial derivatives of the log-likelihood function are given in Appendix.

Therefore, a (1 − a)100% confidence interval for the parameters θ, α, and δ are given by

ˆθMLE ± za/2

√
Var( ˆθMLE), α̂MLE ± za/2

√
Var(α̂MLE), δ̂MLE ± za/2

√
Var(δ̂MLE),

wherein, the Var(θ̂MLE), Var(α̂MLE), and Var(δ̂MLE) are the variance of θ̂MLE, α̂MLE, and δ̂MLE,
respectively, and can be derived by diagonal elements of I−1(θ, α, δ) and za/2 is the critical value
at a level of significance.
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5. Monte Carlo simulation study and real-world application

This section is devoted to discuss the simulation study and the applicability of PMQLD.

5.1. Monte Carlo simulation study

Here, we examine the accuracy of the MLE method in the unknown parameter estimation of the
PMQLD with respect to sample size n. The second algorithm given in subsection 4.1 is used to
simulate the random variables from the PMQLD. The sample sizes are taken as 60, 100, 200, and
300, and the simulation study is repeated 1000 times. The study is designed as follows

(i) Simulate 1000 samples of size n.

(ii) Compute the maximum likelihood estimates for the 1000 samples, say (θ̂i, α̂i, δ̂i), i =
1, 2, ...1000.

(iii) Compute the average MLEs, biases, and mean square errors (MSEs) by using the following
equations

ŝ(n) = 1
1000 ∑1000

i=1 ŝi, biass(n) = 1
1000 ∑1000

i=1 (ŝi − s), and MSEs(n) = 1
1000 ∑1000

i=1 (ŝi − s)2,

for s = θ, α, δ, and n = 60, 100, 200, 300.

Tables 2 to 5 represent the average MLEs, biases, and MSEs (in parentheses) of θ, α, and δ for
different values of θ, α, and δ which are θ = 0.1, 0.3; α = 0.25, 0.50, 0.75; and δ = 2.50, 3.50, 4.50.
Note that the biases and MSEs decrease as n increases for all parameters. Then, MLE method
verifies the asymptotic property for all parameter estimates, and the parameters θ, α, and δ are
over estimated. Further, while the estimation of θ is good for small value of θ, the estimation
of α doses not show a good estimation for small value of α based on average biases and MSEs.
However, there is no particular pattern for estimation of δ.

Table 2: Performance of MLE method for the PMQLD(θ = 0.10, α = 0.50, δ)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

δ = 2.50
θ 0.1151 0.0152(0.0014) 0.1086 0.0086(0.0007) 0.1067 0.0067(0.0002) 0.1009 0.0009(0.0001)
α 0.7519 0.2519(0.0691) 0.7482 0.2482(0.0648) 0.7290 0.2290(0.0557) 0.7195 0.2195(0.0494)
δ 3.0685 0.5685(1.0107) 3.0545 0.5545 (0.9155) 2.8466 0.3466(0.3078) 2.8358 0.3358(0.2186)

δ = 3.50
θ 0.1101 0.0101(0.0010) 0.1051 0.0051(0.0006) 0.1044 0.0044(0.0002) 0.1029 0.0029(0.0001)
α 0.6733 0.1733(0.0348) 0.6662 0.1662(0.0317) 0.6684 0.1684(0.0300) 0.6509 0.1509(0.0259)
δ 3.8991 0.3991(0.9110) 3.8494 0.3494(0.8928) 3.6791 0.1791(0.2898) 3.6010 0.1010(0.0887)

δ = 4.50
θ 0.1087 0.0087(0.0009) 0.1054 0.0054(0.0006) 0.1037 0.0037(0.0002) 0.1029 0.0021(0.0001)
α 0.6299 0.1299(0.0213) 0.6268 0.1268(0.0191) 0.6217 0.1217(0.0161) 0.6192 0.1192(0.0156)
δ 4.8664 0.3664(1.3188) 4.7506 0.2506(1.1957) 4.6354 0.1354(0.3871) 4.5805 0.0805(0.0122)
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Table 3: Performance of MLE method for PMQLD(θ = 0.30, α = 0.50, δ)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

δ = 2.50
θ 0.3791 0.0790 (0.0242) 0.3635 0.0635(0.0215) 0.3378 0.0378 (0.0075) 0.3367 0.0367(0.0039)
α 0.8392 0.3392 (0.1199) 0.8243 0.3243(0.1109) 0.7956 0.2956 (0.0933) 0.7503 0.2503(0.0853)
δ 3.6229 1.1229(3.5560) 3.4672 0.9672(2.9115) 3.1876 0.6876(1.2228) 3.1509 0.6509 (0.7488)

δ = 3.50
θ 0.3839 0.0839 (0.0245) 0.3710 0.0710(0.0216) 0.3275 0.0275(0.0042) 0.3207 0.0207(0.0018)
α 0.7493 0.2493 (0.0698) 0.7215 0.2215(0.0543) 0.7170 0.2170(0.0487) 0.6983 0.1983(0.0457)
δ 4.3284 0.8284(2.5256) 4.1190 0.6190(1.9316) 3.7680 0.2680(0.4910) 3.7393 0.2393(0.2547)

δ = 4.50
θ 0.3638 0.0638 (0.0210) 0.3484 0.0484(0.0118) 0.3143 0.0143(0.0033) 0.3117 0.0117(0.0016)
α 0.6784 0.1784 (0.0373) 0.6703 0.1703(0.0330) 0.6658 0.1658(0.0299) 0.6578 0.1578(0.0277)
δ 5.1958 0.6958(3.0589) 4.9240 0.4240(2.0855) 4.6154 0.1154(0.6430) 4.6713 0.1713(0.2667)

Table 4: Performance of MLE method for PMQLD(θ = 0.10, α, δ = 2.50)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

α = 0.25
θ 0.1128 0.0128(0.0014) 0.1079 0.0079(0.0007) 0.1080 0.0080(0.0002) 0.1027 0.0027 (0.0001)
α 0.7109 0.4609(0.2184) 0.7034 0.4534(0.2088) 0.6957 0.4457(0.2000) 0.6804 0.4304 (0.1888)
δ 3.0685 0.5685(1.0447) 3.0085 0.5085(0.7195) 2.9490 0.4490(0.3138) 2.8473 0.3473 (0.1865)

α = 0.75
θ 0.1351 0.0351(0.0065) 0.1217 0.0217(0.0017) 0.1203 0.0203(0.0023) 0.1156 0.0156(0.0004)
α 0.8487 0.0987(0.0167) 0.8414 0.0914(0.0135) 0.8318 0.0818(0.0095) 0.8190 0.0690(0.0081)
δ 3.1905 0.6905(2.0102) 3.1765 0.6765(1.4733) 3.0104 0.5104(0.7818) 2.8781 0.3781(0.3592)

Table 5: Performance of MLE method for PMQLD(θ = 0.30, α, δ = 2.50)

n = 60 n = 100 n = 200 n = 300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

α = 0.25
θ 0.3998 0.0998(0.0329) 0.3805 0.0805(0.0240) 0.3482 0.0482(0.0060) 0.3336 0.0336(0.0030)
α 0.7823 0.5323(0.2928) 0.7795 0.5295(0.2873) 0.7611 0.5111(0.2636) 0.7437 0.4937(0.2508)
δ 3.5545 1.0545(2.7164) 3.4774 0.9774(2.2678) 3.1584 0.6584(0.7994) 3.0583 0.5583(0.5396)

α = 0.75
θ 0.3773 0.0773(0.0621) 0.3566 0.0566(0.0506) 0.3275 0.0275(0.0267) 0.3097 0.0097(0.0225)
α 0.8962 0.1462(0.0280) 0.8889 0.1389(0.0221) 0.8693 0.1193(0.0186) 0.8475 0.0975(0.0175)
δ 2.9598 0.4598(4.7991) 2.8278 0.3278(4.4320) 2.6089 0.1089(2.7618) 2.5723 0.0723(2.4811)

5.2. Real-world applications

In this subsection, we discuss the real-world applications of the proposed mixed Poisson distribu-
tion. Two data sets are considered to illustrate whether the proposed distribution is well fitted
compared to some other existing competing Poisson mixtures. The best-fitted distribution was
selected based on the negative log-likelihood (−2logL), Akaike Information Criterion (AIC), and
chi-square goodness of fit statistic. The unknown parameters of the models are estimated by
using the MLE method. Tables 6 and 7 summarize all these statistical measures for each data set,
and the standard errors of the parameter estimates are reported in parentheses.

The first data set contains the epileptic seizure counts (Chakraborty, 2010). The sample in-
dex dispersion (τ) of this data set is 1.867. Since τ value is greater than one, the distribution of
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this data set is clearly over-dispersed. Also, the skewness and excess kurtosis for this example are
1.239 and 1.680, respectively, which show that the distribution of the data set is positively skewed
and leptokurtic. This data set was used to fit the PMQLD, GD, NBD, PLD, GPLD, PQLD, and
PGLD. Table 6 presents the estimates of the parameters of distributions and the goodness of fit
test. Of all eight distributions, the PMQLD performs well based on the smallest AIC value of
1191.83 and the smallest chi-square value (χ2) of 2.93 (p-value=0.71).

The second data set represents the number of roots produced by 270 micro-propagated shoots of
the columnar apple cultivar Trajan (Ridout et al., 1998). This is a bimodal data set for which the
sample index dispersion, skewness, and excess kurtosis are 3.077, 0.182, and -1.056, respectively.
These values indicate that the distribution of the data set is extremely over-dispersed, mild
positively skewed, and platykurtic. This data set was also used to fit the same distributions
that we used for the first example. Table 7 summarizes the results of parameter estimations and
the goodness of fit test. The results show that the PMQLD having AIC=1350.20, χ2 = 11.75,
p-value=0.47 outperforms clearly than other distributions.

Figure 6 illustrates how the expected values of the proposed distribution adhere with the
observed value for the data sets. We can see that the observed values of the first and second data
sets are very close to the expected values of the PMQLD, and the observed values of the third
data set are very close to the expected values of the ZMPQLD.
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Figure 6: Performance of PMQLD for the real-data sets

47



Ramajeyam Tharshan, Pushpakanthie Wijekoon
A NEW MIXED POISSON DISTRIBUTION

RT&A, No 1 (67)
Volume 17, March 2022

Table 6. Epileptic seizure counts
Counts Observed Expected

GD NBD PLD GPLD PQLD PGLD PMQLD
0 126 137.95 120.22 128.72 121.93 121.82 122.85 125.65
1 80 83.73 93.00 87.14 90.92 90.95 90.08 80.98
2 59 50.82 59.18 55.26 58.72 58.76 57.85 59.30
3 42 30.85 34.94 33.63 35.20 35.23 35.20 39.25
4 24 18.72 19.84 19.89 20.16 20.17 20.53 22.99
5 8 11.37 10.99 11.52 11.20 11.20 11.54 12.17
6 5 6.90 5.98 6.57 6.08 6.08 6.27 5.94
7 4 4.19 3.22 3.70 3.25 3.25 3.31 2.72
8 3 6.47 3.63 4.57 3.54 3.54 3.37 2.00

Total 351 351 351 351 351 351 351 351
θ̂ = 0.65 β̂ = 1.00 θ̂ = 0.97 θ̂ = 1.11 θ̂ = 1.12 θ̂ = 1.57 θ̂ = 2.70

(0.04) (0.19) (0.05) (0.13) (0.13) (0.66) (1.26)
α̂ = 1.55 α̂ = 2.76 α̂ = 0.38 α̂ = 1.49 α̂ = 0.82

MLE (0.28) (2.76) (0.33) (0.57) (0.07)
β̂ = 3.89 δ̂ = 5.89

(2.38) (2.83)
χ2 11.42 5.67 5.84 4.85 4.86 4.66 2.93

p-value 0.12 0.46 0.56 0.56 0.56 0.46 0.71
−2logL 1196.79 1189.88 1190.36 1188.96 1188.96 1188.54 1185.83

AIC 1198.79 1193.88 1192.36 1192.96 1192.96 1194.54 1191.83

Table 7. Number of roots
Counts Observed Expected

GD NBD PLD GPLD PQLD PGLD PMQLD
0 64 44.62 36.87 31.09 35.46 35.45 82.81 61.93
1 10 37.25 36.05 32.94 34.00 33.99 17.81 13.92
2 13 31.09 32.16 31.79 31.19 31.19 15.31 8.47
3 15 25.95 27.77 29.06 27.78 27.77 16.46 12.85
4 21 21.66 23.58 25.63 24.20 24.20 17.53 19.30
5 18 18.08 19.83 22.04 20.74 20.74 17.70 24.53
6 24 15.09 16.56 18.60 17.55 17.55 16.95 26.85
7 21 12.60 13.76 15.48 14.69 14.69 15.53 25.94
8 23 10.52 11.39 12.73 12.20 12.20 13.70 22.55
9 21 8.78 9.40 10.37 10.05 10.05 11.72 17.90
10 17 7.33 7.74 8.39 8.23 8.24 9.76 13.13
11 12 6.12 6.37 6.74 6.71 6.71 7.96 8.99
12 5 5.11 5.23 5.38 5.44 5.45 6.36 5.78
13 2 4.26 4.28 4.27 4.40 4.40 5.01 3.52
14 3 3.56 3.51 3.38 3.54 3.54 3.88 2.03

≥ 15 1 17.98 15.50 12.11 13.82 13.83 11.51 2.31
Total 270 270 270 270 270 270 270 270

θ̂ = 0.12 β̂ = 0.24 θ̂ = 0.35 θ̂ = 0.37 θ̂ = 0.32 θ̂ = 0.59 θ̂ = 4.23
(0.01) (0.03) (0.02) (0.03) (0.03) (0.08) (1.36)

α̂ = 1.21 α̂ = 0.47 α̂ = 0.68 α̂ = 0.22 α̂ = 0.73
MLE (0.16) (0.26) (0.27) (0.12) (0.04)

β̂ = 4.25 δ̂ = 29.34
(0.66) (9.28)

χ2 121.92 120.76 117.44 110.58 110.58 46.72 11.74
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.466
−2logL 1464.90 1462.63 1454.10 1451.45 1451.45 1384.21 1344.20

AIC 1466.90 1466.63 1456.10 1455.45 1455.45 1390.21 1350.20

6. Conclusion

This paper proposes an alternative mixed Poisson distribution to model the over-dispersed count
data. Explicit expressions of the pmf, hazard rate function, moments, mean, variance, skewness,
and kurtosis were derived for the proposed distribution. Its pmf possesses to be either unimodal
or bimodal, and hazard rate function presents monotonic increasing, decreasing, and bathtub
shapes. The kurtosis and the variance-to-mean ratio functions of the new distribution indicate that
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the distribution can capture various ranges of right tail weights as well as the index of dispersions.
Further, its structural properties show that the new distribution is much more flexible than its
predecessors, negative binomial, geometric, and Poisson-Lindley distributions. The maximum
likelihood method was employed to estimate the parameters of the distribution, and the observed
information matrix has also been derived. The proposed distribution and some other competing
Poisson mixtures have been fitted to two real-world data sets. The results show that the proposed
distribution could provide a better fit than a set of common Poisson mixtures considered in these
applications.
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Appendix: Elements of the observed information matrix, I(θ, α, δ) defined in subsection 4.2.1:

Let us define T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13 and T14 as follows

T1 = Γ(δ)Γ(xi + 1)α3(δ − 1)(1 + θ)δ−2 + Γ(xi + δ)(δ − 1)θδ−2,

T2 = Γ(δ)Γ(xi + 1)α3(1 + θ)δ−1 + θδ−1Γ(xi + δ),

T3 = 3α2Γ(δ)Γ(xi + 1)(1 + θ)δ−1,

T4 =
Γ(xi + 1)α3(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)) + Γ(xi + δ)θδ−1(log(θ) + ψ(xi + δ)),

T5 = Γ(δ)Γ(xi + 1)α3(1 + θ)δ−3 + Γ(xi + δ)θδ−3,

T6 = Γ(δ)Γ(xi + 1)α3(1 + θ)δ−2 + Γ(xi + δ)θδ−2,

T7 = log(1 + θ)(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ))

T8 = (1 + θ)δ−1(Γ(δ)ψ1(δ) + (ψ(δ))2Γ(δ)) + Γ(δ)ψ(δ)(1 + θ)δ−1log(1 + θ),

T9 = Γ(xi + δ)θδ−1log(θ) + θδ−1Γ(xi + δ)ψ(xi + δ),

T10 = Γ(xi + δ)θδ−1ψ1(xi + δ),

T11 = Γ(xi + 1)α3(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)),

T12 = θδ−1Γ(xi + δ)ψ(xi + δ) + Γ(xi + δ)θδ−1log(θ),

T13 = Γ(δ)((1 + θ)δ−2 + log(1 + θ)(δ − 1)(1 + θ)δ−2) + (δ − 1)(1 + θ)δ−2Γ(δ)ψ(δ),

and

T14 = (log(θ) + ψ(xi + δ))Γ(xi + δ)(δ − 1)θδ−2.
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Then, the second order partial derivatives of the log-likelihood function are as follows

∂2l(θ, α, δ|x)
∂θ2 =

−n
θ2 +

n

∑
i=1

xi + δ

(1 + θ)2 +
n

∑
i=1

T2(δ − 1)(δ − 2)T5 − T1(δ − 1)T6

T2
2

,

∂2l(θ, α, δ|x)
∂α2 =

n

∑
i=1

T2(6αΓ(δ)Γ(xi + 1)(1 + θ)δ−1)− T3(3α2Γ(δ)Γ(xi + 1)(1 + θ)δ−1)

T2
2

− 3nα(2(α2 + 1)− 3α3)

(α3 + 1)2 ,

∂2l(θ, α, δ|x)
∂δ2 =

n

∑
i=1

T2(Γ(xi + 1)α3(T7 + T8) + (log(θ) + ψ(xi + δ))T9 + T10)− T4(T11 + T12)

T2
2

− nψ1(δ),

∂2l(θ, α, δ|x)
∂θ∂α

=
n

∑
i=1

T2(3α2Γ(δ)Γ(xi + 1)(δ − 1)(1 + θ)δ−1)− T1T3

T2
1

,

∂2l(θ, α, δ|x)
∂δ∂α

=
n

∑
i=1

T2(3α2Γ(xi + 1)(Γ(δ)(1 + θ)δ−1log(1 + θ) + (1 + θ)δ−1Γ(δ)ψ(δ)))− T4T3

T2
2

,

and

∂2l(θ, α, δ|x)
∂δ∂θ

=
n

∑
i=1

T2(Γ(xi + 1)α3T13 + Γ(xi + δ)θδ−2 + T14)− T4T1

T2
2

− n
1 + θ

,

where ψ1(s) is the trigamma function and defined as ψ1(s) =
d2

ds2 log(Γ(s)) =
n

∑
i=1

1
(s + k)2 .
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