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Abstract—Underwater images in high quality are important for 

many applications but they are often in poor quality since they 

suffer from fog, low brightness, colour distortion, and reduced 

contrast. Underwater image quality is degraded with the depth 

of the water since the red light is absorbed more than blue and 

green lights and the light is scattered by the suspended particles. 

Although several traditional and deep learning based 

approaches are proposed to enhance and restore the image, 

producing a high quality enhanced image with natural colour is 

still challenging. In this paper, a novel convolutional neural 

network architecture is proposed and it has two identical   

branches to input a raw degraded image and a colour balanced 

image. Dense blocks are utilized to train the model with fewer 

parameters. In addition, skip connections are introduced over 

the dense blocks to preserve the spatial information. The 

proposed approach is evaluated on publicly available UIEB 

dataset and shows 28.67 of PSNR value, and 0.89 of SSIM index, 

which are better than the state-of-the-art approaches. 

Keywords—Underwater Image Enhancement, Convolutional 

Neural Network, Deep Learning, Skip Connections. 

I. INTRODUCTION 

Underwater images are widely used to explore and analyse 
the underwater environment. Quality of underwater images 
are always poor since they have a foggy appearance, low 
brightness, colour distortion, uneven illumination, and 
reduced contrast. Due to the poor quality, obtaining useful 
features and information from underwater images is difficult 
for many applications such as underwater archaeology [1], 
underwater species identification [2], inspection of 
underwater cables [3] and infrastructures [4] and control of 
submarines and Autonomous Underwater Vehicles (AUVs) 
[5]. Although several hardware equipment [6] are used for 
underwater image enhancement, they are expensive and need 
expert knowledge and training. Therefore, over the past few 
years, computer vision based automated approaches are 
widely used for underwater image enhancement.  

Several factors diminish the quality of underwater images. 
In underwater, red light is absorbed more faster since its 
wavelength is higher than other lights [7]. Therefore, natural 
colour information is always missing in underwater images 
since these images are often in a bluish or greenish colour in 
most situations. Further, depth and water type also causes 
colour distortion in underwater images. In addition, suspended 
particles [8] in underwater changes the light propagation 
direction and hence produces a foggy appearance in 
underwater images with low contrast. Moreover, due to the 
camera motion [9], underwater images suffer from noise and 

blurring effects. Fig.1 shows a set of underwater images with 
various degradation issues.  

Underwater image enhancement is a well-known problem 
in computer vision and numerous solutions have been 
developed in recent years using traditional and deep learning 
based techniques. Traditional approaches can be grouped as 
enhancement methods and restoration methods based on the 
technique they have used. Traditional image enhancement 
based methods are focused to improve the visual quality of 
underwater images using simplified image processing 
techniques such as Gamma correction [10] and colour 
balancing [10, 11]. Although these approaches are able to 
recover the natural colours, their overall results are poor 
because they do not account for light propagation in 
underwater. 

Image restoration based traditional approaches [12-14] 
analyse the light propagation and transmission in underwater 
and then propose a scattering model to restore the details. In 
these approaches, scene depth is important to estimate the 
transmission and light propagation and hence these methods 
rely on some prior assumptions [14, 15] since estimating the 
depth of a scene from a single image is not an easy task. Since 
these approaches are more complex and hence inflexible to 
implement for real-world applications.  

Recent approaches rely on deep learning based techniques 
to enhance the underwater images. In these approaches  

(e) (e) (d) 

(c) (b) (a) 

Fig. 1: Illustration of underwater images with various degradation 

issues. (a) greenish image. (b) bluish image. (c) blurred image. (d) low 
brightness image. (f) uneven illumination image. (f) low contrast image. 



[16-18], end-to-end Convolutional Neural Network (CNN) 
architectures are used to calculate the transmission and to 
restore the details in underwater images. Due to the lack of a 
huge quantity of training data, CNN based underwater 
enhancement approaches are struggling to generalize the 
model through a large number of parameters. In a few 
approaches [8, 9, 19, 20], synthetic images and Generative 
Adversarial Network (GAN) are used to manage the training 
data deficiency. Although these approaches showed 
significant performance improvement in underwater image 
enhancement, they assume the transmission is same in all 
three channels of a degraded underwater image, hence their 
colour restoration capability is poor than traditional image 
enhancement techniques.  

Traditional image enhancement approaches are inadequate 
at recovering details but can produce images with more natural 
colours. On the contrary, deep learning based approaches are 
able to recover the details but are poor in colour restoration. 
To obtain an image with more recovered details and natural 
colours, we propose a novel dual-CNN architecture for 
underwater image enhancement. We feed a raw degraded 
image and a colour balanced image of that raw image to the 
network to produce an enhanced image with natural colours 
and more details. The proposed network architecture has two 
CNN branches in the front to capture the features of raw and 
colour balanced images and then the enhanced image is 
produced by combining the features of these branches. In 
addition, skip connections are introduced in between the 
layers to speedup the model convergence and preserve the 
spatial information. The proposed approach is compared with 
state-of-the-art approaches on a publicly available benchmark 
dataset and outperforms them significantly. Moreover, a 
comprehensive ablation study is conducted to demonstrate the 
efficacy of the proposed CNN architecture. 

II. RELATED WORK 

In recent years a few deep learning based approaches and 
several traditional approaches are proposed for underwater 
image restoration and enhancement. In this section, the most 
relevant and recent literature are reviewed. Experimental 
reviews on underwater image enhancement and restoration 
can be found in [7, 21]. 

Traditional image enhancement approaches are intended 
to improve the visual quality of underwater images by using 
various colour correction techniques with different colour 
models, and contrast adjustment algorithms such as histogram 
equalization and Gamma correction. Majority of the model-
free approaches produce enhanced images with more realistic 
and natural colours. Ancuti et al., [10] used white balancing 
and Gamma correction with an image sharpening technique. 
Fu et al., [11] used  colour correction and contrast balancing 
algorithms for underwater image enhancement. Sanila et al., 
[22] used white balancing to enhance the contrast of 
underwater images. Based on the inspiration of the human 
visual system, Zhang et al., [23] proposed an approach using 
bilateral filter and trilateral filter to enhance the colours of 
images. An adaptive contrast enhancement is proposed by  
Zhang  et al.,  [24]. Sophiya and Gisha [25] used a white 
balancing technique to improve the colours of an image. 
Marques and Albu [26] generated two images using contrast 
adjustment and darkness removal algorithms and then 
combined them using a multi-scale fusion technique. Since 
image enhancement based traditional approaches use simple 
and pixel-wise calculations, they are easy to implement, 

computationally efficient and hence suitable for real-time 
applications. Although these approaches enhance the image to 
some extent, their image enhancement performance is 
inadequate as they produce under or over enhanced scenes in 
some situations. 

Image restoration based traditional approaches are 
objective to recover the details in an underwater image. These 
approaches consider the physical features of light propagation 
in underwater and then identify the important parameters of 
light scattering such as attenuation and transmission map to 
construct an image degradation model. Since the light 
propagation in underwater and foggy scenes are similar, 
several defogging techniques [27, 28] are applied for 
underwater image restoration. Based on the observation that 
red light is absorbed more in underwater than the green and 
blue lights, Galdran et al., [12] developed a restoration 
approach. Peng et al., [13] recovered the images by 
estimating the distance between camera and objects based on 
the blurriness in image scenes. Jiang et al., [29] transferred 
the learned knowledge from image defogging to underwater 
restoration through a domain adaptation technique. Liu and 
Liang [30] estimated the underwater light by using 
wavelength-dependent attenuation and then calculated the 
transmission in each colour channel. Lee et al., [31] used a 
super-pixel based dark channel prior technique. Yao and  
Xiang [32] estimated the ambient light in underwater by using 
the difference between blue and red lights. Based on the 
observation of blurriness in images, Peng and Cosman [33] 
estimated the depth of scenes and light absorption. Image 
restoration performance of these approaches are dependent on 
accurate depth estimation of scenes. Since the depth 
calculation from a single image is difficult, most of these 
approaches rely on some assumptions and prior knowledge. In 
addition, since these approaches are dependent on many 
physical parameters they are difficult to implement and 
inappropriate for real-time tasks.  

Recently many researchers use end-to-end deep learning 
techniques to train a model for underwater image 
enhancement and restoration. Differing from traditional 
approaches, deep learning based approaches are not 
estimating any light propagation parameters and are able to 
enhance raw underwater images. Guo et al., [34] obtained the 
confidence maps using a gated fusion CNN and then fused it 
with the degraded image to obtain the enhanced image. Li et 
al., [35] proposed a light-weighted CNN architecture using 
synthetic and real-world images. A conditional Generative 
Adversarial Network (cGAN) is utilized by Yang et al., [9] to 
produce natural enhanced images. Islam et al., [17] proposed 
a residual network based generative CNN architecture which 
is able to restore the contrast and other details in higher 
resolution images. In [19], a cycle consistent adversarial 
network is trained in a weakly supervised manner. A 
multiscale dense GAN architecture is proposed by Guo et al., 
[8] for underwater image enhancement. Cho and Kim [36] 
proposed an autoencoder CNN architecture with skip 
connections between front and deeper layers and then 
evaluated the performance on a synthetic image dataset. 
Training data deficiency is the major limitation in deep 
learning based approaches since a massive underwater image 
dataset is not yet available. Due to this limitation, most of 
these approaches are still struggling to improve the image 
quality beyond some extent. Moreover, since the spatial 
information is lost in deeper CNN layers, most of the deep 



learning based approaches produce an enhanced image with 
unnatural colours.  

To overcome the drawback of deep learning based 
underwater enhancement approaches, a novel CNN 
architecture is proposed and that is able to produce high 
quality enhanced images with realistic colours by using 
training samples.   

III. METHODOLOGY 

The proposed CNN architecture for underwater image 
enhancement produces enhanced images with realistic and 
natural colours. Raw degraded images and its colour balanced 
image are fed to the proposed network architecture. The 
proposed network architecture has two identical CNN 
branches to capture the hierarchical features of raw and colour 
balanced images as shown in Fig.2. We have utilized the 
Dense CNN blocks [37] in these branches as they are able to 
generalize the model using fewer training samples. In 
addition, the proposed network architecture has several skip 
connections in between the dense blocks to optimize the CNN 
architecture with a fewer number of parameters. We justify the 
design of the proposed network architecture through a detailed 
ablation study.  

A. Data Pre-processing 

In the preliminary step of this study, degraded underwater 
images and corresponding reference (non-degraded) images 
(non-degraded) are collected from a publicly available 

benchmark dataset. Then the bilinear interpolation technique 
is utilized to resize the images to a fixed size (112 × 112).  

B. Colour Balanced Image generation 

It is noted that CNN based underwater image enhancement 
approaches are struggling to produce enhanced images with 
realistic and natural colours [7]. Since raw underwater images 
are always in bluish or greenish colours, CNN based 
approaches faced difficulties to produce an enhanced image 
with natural colours. To solve this issue, we feed raw and 
colour balanced image to the proposed network architecture to 
produce a better enhanced image.  

We have used a colour balancing technique to generate the 
colour balance image from the raw image.  It is noticed that 
green channel is preserved better than other two channels in 
an underwater image [10]. By assuming all channels should 
have the same mean in enhanced image, we used the following 

equation to produce a colour balanced image (𝐼𝑐𝑏) from the 
raw image 𝐼𝑟𝑎𝑤. 

𝐼𝑟
𝑐𝑏  (𝑥) = 𝐼𝑟

𝑟𝑎𝑤(𝑥) + 𝛽. (𝐼𝑔
𝑟𝑎𝑤  − 𝐼𝑟

𝑟𝑎𝑤) × 

 (1 −  𝐼𝑟
𝑟𝑎𝑤(𝑥). 𝐼𝑔

𝑟𝑎𝑤(𝑥) , 
(1) 

𝐼𝑏
𝑐𝑏  (𝑥) = 𝐼𝑏

𝑟𝑎𝑤(𝑥) + 𝛽. (𝐼𝑔
𝑟𝑎𝑤  − 𝐼𝑏

𝑟𝑎𝑤) × 

(1 − 𝐼𝑏
𝑟𝑎𝑤(𝑥). 𝐼𝑔

𝑟𝑎𝑤(𝑥) 

where 𝐼𝑟
𝑟𝑎𝑤 , 𝐼𝑔

𝑟𝑎𝑤 and 𝐼𝑏
𝑟𝑎𝑤𝑟

 are the mean of red, green and 

blue channels of a raw image, respectively. 𝛽 is a parameter 

Fig.3: An illustration of the Dense Block (denoted as DBlock in Fig.2). In a block, all convolutional layers are having equal number of feature 

channels and same size of kernels. The © notation denotes concatenation operation. 

Fig. 2: Proposed network architecture. It inputs raw degraded image and white balanced image and produces an enhanced image as the output. It has two 

identical branches and each branch has three dense blocks (DBlock) with skip connections (denoted in orange). Output of both branches are added using 

an element-wise addition operation. Number of feature channels are denoted on the top of each convolutional and dense blocks. 



and is set empirically to a fixed value throughout the 
experiment. 

C. Proposed Network Architecture 

The proposed network architecture has two identical CNN 
branches. Raw degraded image and corresponding colour 
balanced image pairs are fed to these branches. As shown in 
Fig.2, these two separate CNN branches are combined in 
deeper layers and then the combined features are captured 
using a few more convolutional layers. Each branch takes the 
input images with the size of 112×112×3 and then the 
proposed network architecture produces the enhanced image 
with the same size of inputs.  

The proposed network architecture has a convolutional 
layer in the front of each branch and which has 16 filters with 
the kernel size of 5×5. As shown in Fig.2, the proposed 
network architecture has three dense blocks in each branch 
and one dense block in combined network. As shown in Fig.3, 
each dense block of the proposed network architecture has 
four convolutional layers. Within a particular dense block, all 
convolutional layers have the same number of filters with 
equal kernel sizes. Batch normalization is introduced in 
between convolutional layers and Rectified Linear Unit 
(ReLU) function is used to activate the features. Similar to the 
DenseNet [37] model, within a dense block, the nth layer 
obtains the feature maps of all previous layers (𝑓1, 𝑓2, … , 𝑓𝑛−1) 
and then applies a non-linear transformation function 𝐻𝑛(. ) to 
produce the output feature map 𝑓𝑛 as follows: 

 𝑓𝑛 = 𝐻𝑛  ([𝑓1, 𝑓2, … , 𝑓𝑛−1]) (2) 

where [𝑓1, 𝑓2, … , 𝑓𝑛−1] denotes the feature maps 
concatenation operation of the layers 1, 2, … , 𝑛 − 1.  As 
denoted in Fig.2, first two dense blocks in each branch have 
16 filters while remaining dense blocks have 32 filters. After 
the three dense blocks, the final output feature maps of raw 
image branch (𝑓𝑚×𝑚×𝑐

𝑟𝑎𝑤 ) and colour balanced image branch 

(𝑓𝑚×𝑚×𝑐
𝑐𝑏 ) are added to produce the combined feature map 

(𝑓𝑚×𝑚×𝑐
𝐶 ) as follows:  

 𝑓𝑚×𝑚×𝑐
𝐶 = 𝑓𝑚×𝑚×𝑐

𝑟𝑎𝑤 ⨁ 𝑓𝑚×𝑚×𝑐
𝑐𝑏   (3) 

where ⨁ denotes element-wise addition operation. After 
this addition process, a dense block is used to capture the 
information from combined features. Finally, at the end of the 
proposed network architecture, a single convolutional layer is 
used to produce the enhanced image. In the proposed network 
architecture, spatial dimension of the feature maps is kept to 
be 112×112 in the convolutional layers and dense blocks.  

We noticed that the proposed architecture is struggling to 
optimize the model and takes too much of epochs to achieve 
an optimal network. Also, spatial information is diluted in 
deeper layers and which is important for image restoration. To 
solve these issues, we introduced the skip connections (shown 
as yellow in Fig.2) in between the dense blocks in branches 
and combined network of the proposed architecture. Since 
these skip connections are concatenating front and end dense 
blocks, spatial information of input images is preserved and 
also the model is optimized within fewer epochs. 

D. Training 

The proposed network architecture is trained for a fixed 
number of epochs and the best performing model is used for 
testing. In each epoch, a set of raw images (𝐼𝑟𝑎𝑤) and colour 

balanced images ( 𝐼𝑐𝑏)  are fed to the proposed network 
architecture and then the obtained output (𝐼𝑜𝑢𝑡)  is compared 

with the undegraded reference ( 𝐼𝑟𝑒𝑓)   image. The Mean 
Square Error (MSE) loss function is used to measure error in 
each iteration as follows: 

 MSE =
1

𝑠 × 𝑠
 ∑ ∑[𝐼(𝑖,𝑗) 

𝑜𝑢𝑡 −  𝐼(𝑖,𝑗) 
𝑟𝑒𝑓

]2

𝑠

𝑗=1

𝑠

𝑖=1

 (4) 

where 𝑠 is the size of the image. During training, all hyper 
parameters are tuned based on the validation results.  

IV. EXPERIMENTAL SETUP 

A. Implementation Details 

We have utilized the Keras library in Google Colab 
platform to implement the methodology. An NVIDIA K80 
GPU is used in the experiments. The Adam optimization 
function is used with the learning rate of 0.001. The proposed 
architecture is trained for 30 epochs with the batch size of 16.  
The code of this work is publicly available at 
https://github.com/RPRO5/Deep-Learning-based-UIE. 

B. Dataset 

Until recently, evaluating the performances of underwater 
images was a challenging task since the benchmark datasets 
have no reference images. Therefore, synthetic images are 
used in the evaluation even though their outputs are unnatural. 
Recently, the Underwater Image Enhancement Benchmark 
(UIEB) Dataset [34] was constructed with 890 real-world 
images and corresponding undegraded reference images. In 
this dataset, all the images are in the size of 640 × 480. Similar 
to other researchers, we used the first 800 images for training 
and the remaining images for testing as to compare the 
performances. Also, we have used 20% of training images for 
validation.  

C. Evaluation Criteria   

To test the performance of the proposed approach, we 
employed the Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM) as metrics. SSIM metric is 
used to compute the similarity between the reference image 

( 𝐼𝑟𝑒𝑓)  and output image ( 𝐼𝑜𝑢𝑡)  based on the contrast, 
luminance, and structure. It is calculated as: 

 SSIM =  
(2µ𝑟µ𝑜 + 𝐶1 )(2𝜎𝑟𝑜 + 𝐶2 )

(µ𝑟
2 + µ𝑜

2 +  𝐶1 )(𝜎𝑟
2 + 𝜎𝑜

2 + 𝐶2 )
 (5) 

where µ𝑟 and µ𝑜  are the mean of reference image and 
output image, respectively. 𝜎𝑟

2 and 𝜎𝑜
2 are the variance of 

reference and output image, respectively. 𝐶1 and 𝐶2 are the 
variables. PSNR metric is used to measure the similarity 

between 𝐼𝑟𝑒𝑓  and 𝐼𝑜𝑢𝑡  based on their pixel values. PSNR is 
computed as: 

 PSNR =  10 𝑙𝑜𝑔10  (
𝑀𝐴𝑋

𝐼𝑟𝑒𝑓
2

𝑀𝑆𝐸
). (6) 

where 𝑀𝐴𝑋𝐼𝑟𝑒𝑓  is the maximum intensity value in the 

reference image. We used the Equation 4 to compute the 
𝑀𝑆𝐸. A higher SSIM and PSNR values denotes that reference 
image is much close to the output image.  

D. Ablation Studies 

Efficiency of the proposed enhancing method is mainly 
dependent on the CNN architecture. Therefore, we conducted 
an ablation study to verify the proposed CNN architectural 
design. The test data of the UIEB dataset is used in this study.  

https://github.com/RPRO5/Deep-Learning-based-UIE


The proposed network architecture has two identical CNN 
branches and it inputs raw and colour balanced images. To 
justify the design of dual CNN architecture, we evaluated the 
performance of single networks with single inputs.  

TABLE 1: PERFORMANCE COMPARISON OF NETWORK BRANCHES 

Network Design PSNR SSIM 

Single network, input: raw image 28.32 0.79 

Single network, input:colour balanced image 28.40 0.82 

Dual network, input: raw and colour balanced 

image 

28.67 0.89 

The proposed dual network design gains knowledge by 
combining raw and colour balanced images using the dual 
CNN architecture, according to the evaluation results in Table 
1.  

We utilised the dense blocks in the proposed dual network 
design. While all previous layers are directly connected with 
a layer in a dense block, a non-dense block has not any such 
connections. In both settings, the number of convolutional 
layers and other parameters are kept the same. Table 2 
summarizes the evaluation results of the proposed network 
architecture with and without the dense blocks. 

TABLE 2: EFFECTIVENESS OF DENSE BLOCKS 

Network Design PSNR SSIM 

Without dense blocks 28.19 0.75 

With dense blocks 28.41 0.87 

Based on the results, it can be clearly seen that dense 
blocks significantly contribute to enhance the performance.  

In addition to the dense blocks, we have introduced skip 
connections over the dense blocks to preserve the spatial 
information and to optimize the model with fewer number of 
parameters. Table 3 justifies this design with other network 
settings.  

TABLE 3: EVALUATION WITH AND WITHOUT SKIP CONNECTIONS 

Network Design PSNR SSIM 

Without skip connections over the dense blocks 28.41 0.87 

With skip connections over the dense blocks 28.67 0.89 

 

E. Testing Results 

We evaluated the enhancement performance of the 
proposed approach on the UIEB dataset. Similar to other 
researchers, the first 800 images are used for training and the 
remaining are used for testing. We compared the performance 
with several deep learning based approaches [8, 17, 19, 34, 35, 
38, 39] and traditional approaches [10, 25, 26, 31-33]. Table 4 
provides the comparison.  

TABLE 4: COMPARISON WITH STATE-OF-THE-ART APPROACHES 

Approach PSNR SSIM 

Guo et al., (2019) [8] 17.28 0.44 

Guo et al., (2018) [19] 15.75 0.52 

Peng and Cosman (2017) [33] 14.01 0.53 

Islam et al., (2017) [17] 16.65 0.57 

Yao and Xiang (2018) [32] 12.80 0.65 

Yang et al., (2020) [39] 17.72 0.66 

Anwar and Porikli (2020) [35] 19.51 0.73 

Ancuti et al., (2018) [10] 19.60 0.76 

Guo et al., (2019) [34] 19.11 0.80 

Sharma et al. (2021) [38] 21.57 0.80 

Marques and Albu (2020) [26] 20.33 0.80 

Lee et al., (2020) [31] 18.60 0.85 

 Sophiya Philip (2019) [25] 21.45 0.87 

Proposed approach (Ours) 28.67 0.89 

The proposed approach clearly outperforms state-of-the-
art approaches in underwater image enhancement, as 
demonstrated by the experimental findings. In addition to the 
quantitative comparison, we have compared the performance 
using few real-world images. Fig.4 compares the qualitative 
comparison with other four best performing approaches.  
Proposed method produces the enhanced image with realistic 
and natural colours than the other approaches as shown in this 
figure.  

V. CONCLUSION  

In this paper, we proposed a novel CNN architecture for 
underwater image enhancement. It has two identical CNN 
branches to input raw degraded image and the corresponding 
colour balanced image. The dense blocks are utilized in the 
proposed network to optimize the model with fewer number 
of parameters. In addition, skip connections are introduced in 
between the layer blocks to preserve the spatial information 
throughout the network. A detailed ablation study is 
conducted to justify the network design. The proposed model 

(a) (b) (c) (d) (e) (f) 
Fig.4: Qualitative comparison with other best performing approaches. (a). Degraded raw image. (b) Sophiya Philip [25] ‘s output. (c) Lee et al., [31]’s output, 

(d) Marques and Albu [26] ‘s output. (e) Sharma et al.[36] ‘s output. (f) output of proposed approach.  



is evaluated on UIEB dataset and showed 28.67 PSNR and 
0.89 SSIM index.  

REFERENCES 

[1] J. G. Martín, J. F. P. Díaz, and W. G. Pretel, "Underwater Archaeology 
in Colombia: Between Commercial Salvage and Science," 
International Journal of Historical Archaeology, pp. 1-17, 2021. 

[2] S. Villon, C. Iovan, M. Mangeas, T. Claverie, D. Mouillot, S. Villéger, 
et al., "Automatic underwater fish species classification with limited 
data using few-shot learning," Ecological Informatics, vol. 63, pp. 101-
117, 2021. 

[3] G. W. Thum, S. H. Tang, S. A. Ahmad, and M. Alrifaey, "Toward a 
Highly Accurate Classification of Underwater Cable Images via Deep 
Convolutional Neural Network," Journal of Marine Science 
Engineering vol. 8, pp. 924-945, 2020. 

[4] M. Martin-Abadal, M. Piñar-Molina, A. Martorell-Torres, G. Oliver-
Codina, and Y. Gonzalez-Cid, "Underwater Pipe and Valve 3D 
Recognition Using Deep Learning Segmentation," Journal of Marine 
Science Engineering, vol. 9, pp. 5-19, 2021. 

[5] J. P. Panda, A. Mitra, and H. V. Warrior, "A review on the 
hydrodynamic characteristics of autonomous underwater vehicles," 
Journal of Engineering for the Maritime Environment, vol. 235, pp. 15-
29, 2021. 

[6] A. Kis, H. Balta, and C. Ancuti, "Underwater Image Enhancement on 
Low-Cost Hardware Platform," in 2021 International Symposium 
ELMAR, pp. 97-100, 2021. 

[7] Y. Wang, W. Song, G. Fortino, L.-Z. Qi, W. Zhang, and A. J. I. A. 
Liotta, "An experimental-based review of image enhancement and 
image restoration methods for underwater imaging," IEEE Access, vol. 
7, pp. 140233-140251, 2019. 

[8] Y. Guo, H. Li, and P. Zhuang, "Underwater image enhancement using 
a multiscale dense generative adversarial network," IEEE Journal of 
Oceanic Engineering, vol. 45, pp. 862-870, 2019. 

[9] M. Yang, K. Hu, Y. Du, Z. Wei, Z. Sheng, and J. Hu, "Underwater 
image enhancement based on conditional generative adversarial 
network," Signal Processing: Image Communication, vol. 81, pp. 115-
129, 2020. 

[10] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, "Color 
balance and fusion for underwater image enhancement," IEEE 
Transactions on image processing, vol. 27, pp. 379-393, 2017. 

[11] X. Fu, Z. Fan, M. Ling, Y. Huang, and X. Ding, "Two-step approach 
for single underwater image enhancement," in International 
Symposium on Intelligent Signal Processing and Communication 
Systems (ISPACS), pp. 789-794, 2017. 

[12] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila, "Automatic red-
channel underwater image restoration," Journal of Visual 
Communication Image Representation, vol. 26, pp. 132-145, 2015. 

[13] Y.-T. Peng, X. Zhao, and P. C. Cosman, "Single underwater image 
enhancement using depth estimation based on blurriness," in IEEE 
International Conference on Image Processing (ICIP), pp. 4952-4956, 
2015. 

[14] C. Li, J. Quo, Y. Pang, S. Chen, and J. Wang, "Single underwater image 
restoration by blue-green channels dehazing and red channel 
correction," in IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), pp. 1731-1735, 2016. 

[15] P. Drews, E. Nascimento, F. Moraes, S. Botelho, and M. Campos, 
"Transmission estimation in underwater single images," in Proceedings 
of the IEEE international conference on computer vision workshops, 
pp. 825-830, 2013. 

[16] C. Li, S. Anwar, and F. Porikli, "Underwater scene prior inspired deep 
underwater image and video enhancement," Pattern Recognition, vol. 
98, pp. 107-118, 2020. 

[17] M. J. Islam, P. Luo, and J. Sattar, "Simultaneous enhancement and 
super-resolution of underwater imagery for improved visual 
perception," arXiv preprint arXiv:.01155, 2020. 

[18] X. Sun, L. Liu, and J. Dong, "Underwater image enhancement with 
encoding-decoding deep CNN networks," in IEEE 
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, pp. 1-6, 
2017. 

[19] C. Li, J. Guo, and C. Guo, "Emerging from water: Underwater image 
color correction based on weakly supervised color transfer," IEEE 
Signal processing letters, vol. 25, pp. 323-327, 2018. 

[20] P. Liu, G. Wang, H. Qi, C. Zhang, H. Zheng, and Z. Yu, "Underwater 
image enhancement with a deep residual framework," IEEE Access, 
vol. 7, pp. 94614-94629, 2019. 

[21] S. Anwar and C. Li, "Diving deeper into underwater image 
enhancement: A survey," Signal Processing: Image Communication, 
vol. 89, pp. 978-994, 2020. 

[22] K. Sanila, A. A. Balakrishnan, and M. Supriya, "Underwater Image 
Enhancement Using White Balance, USM and CLHE," in International 
Symposium on Ocean Technology (SYMPOL), pp. 106-116, 2019. 

[23] S. Zhang, T. Wang, J. Dong, and H. J. N. Yu, "Underwater image 
enhancement via extended multi-scale Retinex," Neurocomputing, vol. 
245, pp. 1-9, 2017. 

[24] W. Zhang, X. Pan, X. Xie, L. Li, Z. Wang, and C. Han, "Color 
correction and adaptive contrast enhancement for underwater image 
enhancement," Computers Electrical Engineering vol. 91, pp. 981-996, 
2021. 

[25] G. G. S. Sophiya Philip "Underwater Image Enhancement using White 
Balance and Fusion," International Journal of Engineering Research & 
Technology (IJERT), vol. 08, pp. 1-5, 2019. 

[26] T. P. Marques and A. B. Albu, "L2UWE: A framework for the efficient 
enhancement of low-light underwater images using local contrast and 
multi-scale fusion," in Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition Workshops, pp. 538-539, 
2020. 

[27] A. Sivaanpu and K. Thanikasalam, "Scene-Specific Dark Channel 
Prior for Single Image Fog Removal," International Journal on 
Advances in ICT for Emerging Regions, vol. 14, pp. 1-12, 2021. 

[28] H. Kaiming, S. Jian, and T. Xiaoou, "Single image haze removal using 
dark channel prior," IEEE transactions on pattern analysis and machine 
intelligence, vol. 33, pp. 2341-2353, 2010. 

[29] Q. Jiang, Y. Zhang, F. Bao, X. Zhao, C. Zhang, and P. J. P. R. Liu, 
"Two-step domain adaptation for underwater image enhancement," 
Pattern Recognition, vol. 122, pp. 324-342, 2022. 

[30] K. Liu and Y. J. O. E. Liang, "Underwater image enhancement method 
based on adaptive attenuation-curve prior," Optics Express, vol. 29, pp. 
10321-10345, 2021. 

[31] H. S. Lee, S. W. Moon, and I. K. Eom, "Underwater image 
enhancement using successive color correction and superpixel dark 
channel prior," Symmetry, vol. 12, pp. 1220-1238, 2020. 

[32] B. Yao and J. Xiang, "Underwater image dehazing using modified dark 
channel prior," in Chinese Control And Decision Conference (CCDC), 
pp. 5792-5797, 2018. 

[33] Y.-T. Peng and P. C. Cosman, "Underwater image restoration based on 
image blurriness and light absorption," IEEE transactions on image 
processing, vol. 26, pp. 1579-1594, 2017. 

[34] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, et al., "An 
underwater image enhancement benchmark dataset and beyond," IEEE 
Transactions on Image Processing, vol. 29, pp. 4376-4389, 2019. 

[35] C. Li, S. Anwar, and F. J. P. R. Porikli, "Underwater scene prior 
inspired deep underwater image and video enhancement," Pattern 
Recognition, vol. 98, p. 107-118, 2020. 

[36] Seok Je Cho and D. G. Kim, "Underwater image enhancement using 
symmetrical autoencoder with synthesis datasets," Journal of 
Advanced Marine Engineering and Technology, vol. 44, pp. 446-452, 
2020. 

[37] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely 
connected convolutional networks," in Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 4700-4708, 
2017. 

[38] P. K. Sharma, I. Bisht, and A. Sur, "Wavelength-based Attributed Deep 
Neural Network for Underwater Image Restoration," arXiv preprint 
arXiv:.07910, 2021. 

[39] M. Yang, K. Hu, Y. Du, Z. Wei, Z. Sheng, and J. J. S. P. I. C. Hu, 
"Underwater image enhancement based on conditional generative 
adversarial network," Signal Processing: Image Communication, vol. 
81, p. 115-129, 2020. 

 

 

View publication stats

https://www.researchgate.net/publication/359966989

