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Abstract

In this study, the generalized coupled nonlinear Schrödinger-KdV (NLS-KdV) system is
investigated to obtain new optical soliton solutions. This system appears as a model for
reciprocity between long and short waves in various of physical settings. Different kind of
new soliton solutions including dark, bright, combined dark-bright, singular and combined
singular soliton solutions are obtained using two effective methods namely, the extended
sinh-Gordon equation expansion method and the solitary wave ansatz method. In addition,
the modulation instability analysis of the system is presented based on the standard linear-
stability analysis. The behaviours of obtained solutions are expressed by 3D graphs.

Keywords: Generalized coupled NLS-KdV system; Soliton solutions; Ansatz method; Mod-
ulation instability analysis.

1 Introduction

During the past several decades, the coupled nonlinear Schrödinge-Korteweg-de Vries (NLS-KdV)
system has received extensive attention because of its important physical background [1–3]. Con-
siders the generalized version of coupled NLS-KdV system of the form [4]:

iut + λ1uxx + λ2|u|
2u+ λ3uv = 0,

vt + β1vvx + β2vxxx + β3

�

|u|2
�

x = 0, (1)

where u = u(x, t) ∈ C, v = v(x, t) ∈ R and λi, βi (i = 1, 2, 3) are constants. The NLS-KdV
system occurs in phenomena of interactions between short and long dispersive waves arising in
fluid mechanics, for instance the interactions of capillary-gravity water waves.

The important issues of great concern for this model are the existence and stability of the solitary
wave solutions. It is known that, due to the effect of nonlinearity and dispersion, the coupled
NLS-KdV system usually possesses such kind of solutions. The existence of solutions for the cou-
pled system of NLS-KdV has been studied in [5, 6]. Furthermore, several stability theories have
been used to prove the stability of solitary wave solutions of this system [7–9].

Recently, the existence and bifurcation of nontrivial solutions for the coupled NLS-KdV system
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is studied in [10]. The two techniques, specifically, the sub-equation method and the Kudryashov
method have been utilized in [4] to fund optical soliton solutions of the above generalized coupled
NLS-KdV equations. This present work investigates to obtain the soliton and combined soliton
solutions to the Eq. (1) based on the extended sinh Gordon expansion method (EshGEM) [11,12]
and the solitary wave ansatz method [13, 14]. In addition, the modulation instability analysis of
the stationary solution of this system is studied by using the standard linear-stability analysis.
Except the EshGEM and solitary wave ansatz method, analytic solutions are found to the variety
of integer and fractal order models with the execution of other methods [15–25]. However, the
proposed methods are powerful tools for constructing the exact solutions of nonlinear differential
equations and gained considerable attention in recent years. To our best knowledge, the appli-
cation of the proposed methods to the model, and the received combined soliton solutions are novel.

The paper’s structure is proposed as follows. The mathematical analysis of the proposed model
is presented in Section 2. The implementations of the above proposed two methods are devoted
to Section 3 and 4. In last section, the conclusion is revealed.

2 Mathematical analysis for the model

In order to find the solitary wave solution of Eq. (1), consider the wave transformation

u =φ(ξ)ei(kx+ωt)

v =ψ(ξ), ξ = x− ct, (2)

here k,ω and c are constants. By substituting (2) into equation (1) and spliting the real and
imaginary parts, we get

−ωφ(ξ)− k2λ1φ(ξ) + λ2φ(ξ)
3 + λ3φ(ξ)ψ(ξ) + λ1φ

00(ξ) = 0 (3)

(−c+ 2kλ1)φ
0(ξ) = 0 (4)

and

2β3φ(ξ)φ
0(ξ)− cψ0(ξ) + β1ψ(ξ)ψ

0(ξ) + β2ψ
(3)(ξ) = 0. (5)

From Eq. (4), we get

c = 2kλ1 (6)

Inserting Eq. (6) into Eq. (5), and integrate once with zero constant of integration, we get

1

2
β1ψ(ξ)

2 + β3φ(ξ)
2 − 2kλ1ψ(ξ) + β2ψ

00(ξ) = 0 (7)

The Eqs. (3) and (7) will be discussed in the following two sections to obtain the solitary wave
solutions of Eq. (1).
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3 Implementation of the extended ShGEEM

In this section, we implement the extended ShGEEM to solve the Eq. (1). Consider the homo-
geneous balance φ00(ξ) with φ(ξ)3 in Eq. (3) yields n = 1 and ψ00(ξ) with ψ(ξ)2 in Eq. (7) yields
m = 2. According to ShGEEM [11,12], we assume that the solution structure of the form

φ(ω) = A0 +B1sinh(ω) + A1cosh(ω),

ψ(ω) = a0 + b1sinh(ω) + a1cosh(ω) + cosh(ω)[b2sinh(ω) + a2cosh(ω)], (8)

with
φ(ξ) = A0 ± iB1sech(ξ)− A1tanh(ξ),

φ(ξ) = A0 ± B1csch(ξ)− A1coth(ξ), (9)

and
ψ(ξ) = a0 ± ib1sech(ξ)− a1tanh(ξ)− tanh(ξ)[±ib2sech(ξ)− a2tanh(ξ)],

ψ(ξ) = a0 ± b1csch(ξ)− a1coth(ξ)− coth(ξ)[±b2csch(ξ)− a2coth(ξ)], (10)

Substituting Eq. (8) and its second derivative along with ω0 = sinh(ξ) into Eqs. (3) and (7), we
obtain the set of parameter values by solving the algebra equations. For each set, the following
solution of Eq. (1) can be found by Inserting the values of parameters into equations Eq. (9) and
Eq. (10) and then, into equation Eq. (2).

Set 1

A0 = 0, A1 = 0, B1 = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

,

a0 =
12β2

β1

, a1 = 0, b1 = 0, a2 = −
12β2

β1

, b2 = 0, k =
β1β3λ1 + 24β2

2λ2 − 6β2β3λ3

12β2λ1λ2

,

ω = −
4β2

2

λ1

+ λ1 −
β2
1β

2
3λ1

144β2
2λ

2
2

−
β1β3

3λ2

+
β1β

2
3λ3

12β2λ
2
2

+
2β2β3λ3

λ1λ2

−
β2
3λ

2
3

4λ1λ
2
2

. (11)

Replacing the values of set 1 into Eqs. (9) and (10), we obtain the bright soliton solutions for the
above model as follows:

u(x, t) = ±i

s

2 (−β1λ1 + 6β2λ3)

β1λ2

sech(x− ct)ei(kx+ωt),

v(x, t) =
12β2

β1

sech2(x− ct), (12)

and singular soliton solutions for the above model as follows:

u(x, t) = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

csch(x− ct)ei(kx+ωt),

v(x, t) = −
12β2

β1

csch2(x− ct), (13)
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Figure 1: (a) 3D graphs for bright soliton solutions given in Eq. (12) of (a) |u(x, t)| and (b) |v(x, t)|
with λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

provided that
(−β1λ1 + 6β2λ3)

β1λ2

> 0. The behaviours of soliton solutions of Eq. (12) and (13) are

presented in Fig. (1) and Fig. (2) respectively.

Figure 2: (a) 3D graphs for singular soliton solutions given in Eq. (13) of (a) |u(x, t)| and (b) |v(x, t)|
with λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

Set 2

A0 = 0, A1 = 0, B1 = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

, k =
−β1β3λ1 − 24β2

2λ2 + 6β2β3λ3

12β2λ1λ2

,

a0 =
−β1β3λ1 + 12β2

2λ2 + 6β2β3λ3

3β1β2λ2

, a1 = 0, b1 = 0, a2 = −
12β2

β1

, b2 = 0,

ω = −
4β2

2

λ1

+λ1−
β2
1β

2
3λ1

144β2
2λ

2
2

−
β1β3

3λ2

−
8β2λ3

β1

+
β1β

2
3λ3

12β2λ
2
2

+
2β2β3λ3

λ1λ2

−
β3λ1λ3

3β2λ2

−
β2
3λ

2
3

4λ1λ
2
2

+
2β3λ

2
3

β1λ2

. (14)

Replacing the values of set 2 into Eqs. (9) and (10), we obtain the bright soliton solutions for the
above model as follows:

u(x, t) = ±i

s

2 (−β1λ1 + 6β2λ3)

β1λ2

sech(x− ct)ei(kx+ωt),
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v(x, t) =
−β1β3λ1 − 24β2

2λ2 + 6β2β3λ3

3β1β2λ2

+
12β2

β1

sech2(x− ct), (15)

and singular soliton solutions for the above model as follows:

u(x, t) = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

csch(x− ct)ei(kx+ωt),

v(x, t) =
−β1β3λ1 − 24β2

2λ2 + 6β2β3λ3

3β1β2λ2

−
12β2

β1

csch2(x− ct), (16)

provided that
(−β1λ1 + 6β2λ3)

β1λ2

> 0. The behaviours of soliton solutions of Eq. (15) and (16) are

presented in Fig. (3) and Fig. (4) respectively.

Figure 3: (a) 3D graphs for bright soliton solutions given in Eq. (15) of (a) |u(x, t)| and (b) |v(x, t)|
with λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

Figure 4: (a) 3D graphs for singular soliton solutions given in Eq. (16) of (a) |u(x, t)| and (b) |v(x, t)|
with λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

Set 3

A0 = 0, A1 = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

, B1 = 0, k =
λ0

12β2λ1λ2

,
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a0 =
−β1β3λ1 + 48β2

2λ2 + 6β2β3λ3 + λ0

6β1β2λ2

, a1 = 0, b1 = 0, a2 = −
12β2

β1

, b2 = 0,

ω = −2λ1−
4β2

2

λ1

−
β2
1β

2
3λ1

144β2
2λ

2
2

+
2β1β3

3λ2

+
8β2λ3

β1

+
β1β

2
3λ3

12β2λ
2
2

+
λ0λ3

6β1β2λ2

−
4β2β3λ3

λ1λ2

−
β3λ1λ3

6β2λ2

−
β2
3λ

2
3

4λ1λ
2
2

+
β3λ

2
3

β1λ2

,

(17)

where λ0 = ±
q

β2
1β

2
3λ

2
1 − 12β1β2β3λ1 (8β2λ2 + β3λ3) + 36β2

2 (16β
2
2λ

2
2 + 16β2β3λ2λ3 + β2

3λ
2
3).

Replacing the values of Set 3 into Eqs. (9) and (10), we obtain the dark soliton solutions for
the above model as follows:

u(x, t) = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

tanh[x− ct]ei(kx+ωt),

v(x, t) =
λ0 − β1β3λ1 + 48β2

2λ2 + 6β2β3λ3

6β1β2λ2

−
12β2

β1

tanh2(x− ct), (18)

and singular soliton solutions for the above model as follows:

u(x, t) = ±

s

2 (−β1λ1 + 6β2λ3)

β1λ2

coth(x− ct)ei(kx+ωt),

v(x, t) =
λ0 − β1β3λ1 + 48β2

2λ2 + 6β2β3λ3

6β1β2λ2

−
12β2

β1

coth2(x− ct), (19)

provided that
(−β1λ1 + 6β2λ3)

β1λ2

> 0. The behaviours of soliton solutions of Eq. (18) and (19) are

shown in Fig. (5) and Fig. (6) respectively.

Figure 5: (a) 3D graphs for dark soliton solutions given in Eq. (18) of (a) |u(x, t)| and (b) |v(x, t)| with
λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

Set 4

A0 = 0, A1 = B1 = ±

s

−β1λ1 + 6β2λ3

β1λ2

, k =
λ0

12β2λ1λ2

,
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Figure 6: (a) 3D graphs for singular soliton solutions given in Eq. (19) of (a) |u(x, t)| and (b) |v(x, t)|
with λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

a0 =
−β1β3λ1 + 30β2

2λ2 + 6β2β3λ3λ0

6β1β2λ2

, a1 = 0, b1 = 0, a2 = −
6β2

β1

, b2 = −
6β2

β1

,

ω = −
β2
2

4λ1

−
λ1

2
−

β2
1β

2
3λ1

144β2
2λ

2
2

+
β1β3

6λ2

+
2β2λ3

β1

+
β1β

2
3λ3

12β2λ
2
2

+
λ0λ3

6β1β2λ2

−
β2β3λ3

λ1λ2

−
β3λ1λ3

6β2λ2

−
β2
3λ

2
3

4λ1λ
2
2

+
β3λ

2
3

β1λ2

,

(20)

where λ0 = ±
q

β2
1β

2
3λ

2
1 − 12β1β2β3λ1 (2β2λ2 + β3λ3) + 36β2

2 (β
2
2λ

2
2 + 4β2β3λ2λ3 + β2

3λ
2
3).

Replacing the values of Set 4 into Eqs. (9) and (10), we obtain the combined dark-bright soliton
solutions for the above model as follows:

u(x, t) = ±

s

−β1λ1 + 6β2λ3

β1λ2

[isech(x− ct)− tanh(x− ct)]ei(kx+ωt),

v(x, t) =
−β1β3λ1 + 30β2

2λ2 + 6β2β3λ0λ3

6β1β2λ2

+
6iβ2

β1

sech(x−ct) tanh(x−ct)−
6β2

β1

tanh2(x−ct), (21)

and combined singular soliton solutions for the above model as follows:

u(x, t) = ±

s

−β1λ1 + 6β2λ3

2β1λ2

[− coth(x− ct) + csch(x− ct)]ei(kx+ωt),

v(x, t) =
−β1β3λ1 + 30β2

2λ2 + 6β2β3λ0λ3

6β1β2λ2

+
6β2

β1

csch(x−ct) coth(x−ct)−
6β2

β1

coth2(x−ct), (22)

provided that
(−β1λ1 + 6β2λ3)

β1λ2

> 0. The behaviour of soliton solutions of Eq. (22) is shown in

Fig. (7).

4 Implementation of solitary wave ansatz method

In this section, we utilize the solitary wave ansatz method to solve the generalized coupled NLS-
KdV equations. This is an effective and more powerful mathematical tool for constructing exact
solutions of nonlinear differential equations, and gained considerable attention in recent years
[13, 14].
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Figure 7: (a) 3D graphs for combined singular soliton solutions given in Eq. (22) of (a) |u(x, t)| and (b)
|v(x, t)| with λ1 = λ2 = λ3 = 0.1, β1 = β2 = β3 = 0.2.

4.1 Bright Soliton solution

The solitary wave ansatz for the bright soliton solution, the hypothesis is [13, 14]

φ(ξ) = A1sech
p1(µξ),

ψ(ξ) = A2sech
p2(µξ), (23)

where ξ = x − ct and A1, A2, p1, p2, µ are real constant. By inserting (23) into (3) and (7) we
obtain the following two relations:

− A1ω sechp1(µξ) + A3
1λ2 sech3p1(µξ) + A1A2λ3 sechp1+p2(µξ)− µ2A1p1λ1 sech2+p1(µξ)

+ µ2A1p
2
1λ1 sechp1(µξ)− µ2A1p

2
1λ1 sech2+p1(µξ)− A1λ1k

2sechp1(µξ) = 0, (24)

1

2
A2

2β1 sech2p2(µξ) + A2
1β3 sech2p1(µξ)− µ2A2p2β2 sech2+p2(µξ)

+ µ2A2p
2
2β2 sechp2(µξ)− µ2A2p

2
2β2 sech2+p2(µξ)− 2A2λ1k sechp2(µξ) = 0. (25)

By virtue of balancing principle, on equating the exponents of each pair of the sech functions, we
find

3p1 = p1 + p2,

2p2 = 2 + p2, then p1 = 1 and p2 = 2. (26)

Substituting p1 = 1, p2 = 2 into (24) and (25) and setting the coefficients of sechj(µξ) (j =
0, 1, 2, 3, 4) to zero, we get:

A1

⇥

ω + λ1

�

−µ2 + k2
�⇤

= 0,

A1

�

A2
1λ2 + A2λ3 − 2µ2λ1

�

= 0,
⇥

A2
1β3 + 2A2

�

2µ2β2 − λ1k
�⇤

= 0,

1

2
A2

�

A2β1 − 12µ2β2

�

= 0. (27)

Solving the above system of equations, we get:

A1 = ±

√
2µ

√
β1λ1 − 6β2λ3√
β1

√
λ2

, A2 =
12µ2β2

β1

, k =
β3 (β1λ1 − 6β2λ3) + 24µ2β2

2λ2

12β2λ1λ2

,

8



ω = λ1



µ2 −
(β3 (β1λ1 − 6β2λ3) + 24µ2β2

2λ2)
2

144β2
2λ

2
1λ

2
2

�

. (28)

From (23) and (28), the bright soliton solutions of the generalized coupled system of NLS-KdV
equations are given by the formula

u(x, t) = ±

√
2µ

√
β1λ1 − 6β2λ3√
β1

√
λ2

sech [µ(x− ct)] ei(kx+ωt). (29)

v(x, t) =
12µ2β2

β1

sech2 [µ(x− ct)] , (30)

provided that
(β1λ1 − 6β2λ3)

β1λ2

> 0. Note that this result is consistent with the results derived by

the extended ShGEEM.

4.2 Singular Soliton solution

The solitary wave ansatz for the singular soliton solution, the hypothesis is [13, 14]

φ(ξ) = A1csch
p1(µξ),

ψ(ξ) = A2csch
p2(µξ), (31)

where ξ = x − ct and A1, A2, p1, p2, µ are reai constant. By Inserting (31) into (3) and (7) we
obtain the following two relations:

− A1ωcsch
p1(µξ)− A1λ1k

2cschp1(µξ) + A1p1λ1µ
2csch2+p1(µξ) + A1p

2
1λ1µ

2cschp1(µξ)

+ A1p
2
1λ1µ

2csch2+p1(µξ) + A3
1λ2csch

3p1(µξ) + A1A2λ3csch
p1+p2(µξ) = 0 (32)

1

2
A2

2β1csch
2p2(µξ) + A2p2β2µ

2csch2+p2(µξ) + A2p
2
2β2µ

2cschp2(µξ) + A2p
2
2β2µ

2csch2+p2(µξ)

+ A2
1β3csch

2p1(µξ)− 2A2λ1kcsch
p2(µξ) = 0. (33)

By virtue of balancing principle, on equating the exponents of each pair of the sech functions, we
find

3p1 = p1 + p2,

2p2 = 2 + p2, then p1 = 1 and p2 = 2. (34)

Substituting p1 = 1, p2 = 2 into (32) and (33) and setting the coefficients of sechj(µξ) (j =
0, 1, 2, 3, 4) to zero, we get:

A1

⇥

ω +
�

k2 − µ2
�

λ1

⇤

= 0,

A1

�

2µ2λ1 + A2
1λ2 + A2λ3

�

= 0,

A2
1β3 + A2

�

4µ2β2 − 2kλ1

�

= 0,

1

2
A2

�

A2β1 + 12µ2β2

�

= 0. (35)
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Solving the above system of equations, we get:

A1 = ±

√
2µ

√
−β1λ1 + 6 β2λ3√
β1

√
λ2

, A2 = −
12µ2β2

β1

, k =
24µ2β2

2λ2 + β3 (β1λ1 − 6β2λ3)

12β2λ1λ2

,

ω = λ1

✓

µ2 −
(24µ2β2

2λ2 + β3 (β1λ1 − 6β2λ3))
2

144β2
2λ

2
1λ

2
2

◆

. (36)

From (31) and (36), the soliton soliton solutions of the generalized coupled system of NLS-KdV
equations are given by the formula

u(x, t) = ±

√
2µ

√
−β1λ1 + 6 β2λ3√
β1

√
λ2

csch [µ(x− ct)] ei(kx+ωt). (37)

v(x, t) = −
12µ2β2

β1

csch2 [µ(x− ct)] , (38)

provided that
(−β1λ1 + 6β2λ3)

β1λ2

> 0. Note that this result is consistent with the results derived

by the extended ShGEEM.

5 Modulation instability analysis

In this section, we derive the modulation instability (MI) of the stationary solutions of the coupled
NLS-KdV equations by employing the standard linear stability analysis [26].

Based on the linear stability analysis, the stationary solutions of Eq. (1) have the following
form [26]

u = q0 eiωt, v = p0, (39)

where p0 and q0, are the real constant-amplitudes (initial incidence power). Substituting Eq. (39)
into Eq. (1), we get

ω = q20λ2 + p0λ3, (40)

In order to find the linear stability analysis of Eq. (1), the perturbed stationary solutions can be
written as

u = (q0 + θq̃[x, t]) eiωt, v = (p0 + θp̃[x, t]) (41)

where θ << 1 is a perturbation parameter. Substituting Eq. (41) into Eq. (1), we obtain

q̃cq20λ2 + q0λ3p̃[x, t] + q20λ2q̃[x, t] + iq̃(0,1)[x, t] + 2ikλ1q̃
(1,0)[x, t] + λ1q̃

(2,0)[x, t] = 0,

p̃(0,1)[x, t] + p0β1p̃
(1,0)[x, t] + q0β3q̃

(1,0)[x, t] + β2p̃
(3,0)[x, t] = 0, (42)

where 0∗0 means complex conjugate. Now, we introduce q̃ and p̃ in the following form:

q̃[x, t] = q1 ei(k̂x�ω̂t) + q2 e�i(k̂x�ω̂t),

p̃[x, t] = p1 ei(k̂x�ω̂t) + p2 e�i(k̂x�ω̂t), (43)

10



Then, we substitute Eq. (43) into Eq. (42), yields the following homogeneous equations for
p1, q1, p2, q2:

p1

⇣

ω̂ − k̂p0β1 + k̂3β2

⌘

− k̂q0q1β3 = 0,

p2

⇣

ω̂ − k̂p0β1 + k̂3β2

⌘

− k̂q0q2β3 = 0,

q20q1λ2 − q2

⇣

ω̂ + k̂
⇣

−2k + k̂
⌘

λ1 − q20λ2

⌘

+ p2q0λ3 = 0,

ω̂q1 − 2kk̂q1λ1 − k̂2q1λ1 + q0 (q0 (q1 + q2)λ2 + p1λ3) = 0, (44)

From Eq. (44), we obtain the following coefficient matrix of p1, q1, p2, q2
0

B

B

B

@

ω̂ − k̂p0β1 + k̂3β2 −k̂q0β3 0 0

0 0 ω̂ − k̂p0β1 + k̂3β2 −k̂q0β3

0 q20λ2 q0λ3 −ω̂ − k̂2λ1 + q20λ2

q0λ3 ω̂ − k̂2λ1 + q20λ2 0 q20λ2

1

C

C

C

A

0

B

B

@

p1
q1
p2
q2

1

C

C

A

=

0

B

B

@

0
0
0
0

1

C

C

A

The above coefficient matrix has a nontrivial solution when the determinant vanishes. By ex-
panding the determinant, we derive the following dispersion relation:

−ω̂4 +m3ω̂
3 +m2ω̂

2 +m1ω̂ +m0 = 0, (45)

where

m0 = k̂2
⇣

k̂2
⇣

−p0β1 + k̂2β2

⌘

λ1 − q20β3λ3

⌘⇣⇣

−p0β1 + k̂2β2

⌘⇣

k̂2λ1 − 2q20λ2

⌘

− q20β3λ3

⌘

,

m1 = 2k̂3
⇣

−p0β1 + k̂2β2

⌘

λ1

⇣

k̂2λ1 − 2q20λ2

⌘

+ 2k̂q20β3

⇣

−k̂2λ1 + q20λ2

⌘

λ3,

m2 = −k̂2
⇣

p20β
2
1 − 2k̂2p0β1β2 + k̂4β2

2 − k̂2λ2
1 + 2q20λ1λ2

⌘

,

m3 = 2k̂p0β1 − 2k̂3β2.

It is noted that the coupled NLS-KdV equations are modulational stable for any wavenumber k̂
if and only if four roots ω̂ of Eq. (45) are all positive real numbers. However, it is not so easy to
find the roots of Eq. (45), since we have to employ the existing complicated analytical formulae
and the associated criteria for the roots of a fourth-order polynomial. Therefore, we consider a

special case of initial incidence powers, namely, p0 =
k̂2β2

β1

, q0 =
k̂
√
λ1√
λ2

, which simplifies Eq. (45)

to

−ω̂4 − k̂4λ2
1ω̂

2 +
k̂6β2

3λ
2
1λ

2
3

λ2
2

= 0. (46)

Now, the solution of dispersion relation of Eq. (46) is,

ω̂ = ±
1
√
2

v

u

u

u

t

k̂4λ2
1 ±

r

k̂6λ2
1

⇣

k̂2λ2
1λ

2
2 − 4β2

3λ
2
3

⌘

λ2

. (47)

Thus, we observe that the modulation instability of the Eq. (1) occurs when either

k̂6λ2
1

⇣

k̂2λ2
1λ

2
2 − 4β2

3λ
2
3

⌘

< 0 (48)
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or

k̂4λ2
1 ±

r

k̂6λ2
1

⇣

k̂2λ2
1λ

2
2 − 4β2

3λ
2
3

⌘

λ2

< 0. (49)

Moreover, we investigate the modulation Instability gain spectrum G(k̂), which is determined by
the maximum absolute value for the imaginary part of the wavenumber and defined as

G(k̂) = 2Im(ω̂) =
√
2Im

h

v

u

u

u

t

k̂4λ2
1 ±

r

k̂6λ2
1

⇣

k̂2λ2
1λ

2
2 − 4β2

3λ
2
3

⌘

λ2

i

, (50)

Figure 8: Gain spectrum of modulation instability for Eq. (1) when λ1 = λ3 = β3 = 1 and λ2 = 3, 2, 1
(From bottom to up).

In Fig. 8, we plot the gain spectrum of modulation instability for three different values of λ1,λ2,λ3

and β3.

6 Conclusions

In this study, two effective methods, namely, the extended sinh-Gordon equation expansion method
and the solitary wave ansatz method have been successfully applied to obtain dark, bright, com-
bined dark-bright, singular and combined singular soliton solutions of the generalized coupled
NLS-KdV equations. To our best knowledge, the application of proposed methods to the model,
and the received combined soliton solutions are new, which have not been reported earlier. More-
over, by applying the concept of linear stability analysis, the modulation instability analysis of
the stationary solution is studied and the MI gain spectrum is reported for the proper choice of
initial incidence powers. The dynamical behaviour of the obtained solutions are demonstrated in
Figs 1-8.
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[14] Özkan Güner, Ahmet Bekir, Fatih Karaca, Optical soliton solutions of nonlinear evolution
equations using ansatz method, Optik, 127 (1), 131-134 (2016).

[15] Eslami, M., & Rezazadeh, H., The first integral method for Wu–Zhang system with con-
formable time-fractional derivative. Calcolo, 53(3), 475-485 (2016).

[16] Mathanaranjan. T., Exact and explicit traveling wave solutions to the generalized Gardner
and BBMB equations with dual high-order nonlinear terms. Partial Differential Equations in
Applied Mathematics, 4, 100120 (2021).

[17] Senol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L., Efficient analytical techniques
for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent
Schrödinger potential. Adv. Differ. Equ., 2019, 1-21 (2019).

[18] Mathanaranjan. T, Himalini. K., Analytical solutions of the time-fractional non-linear
Schrodinger equation with zero and non zero trapping potential through the Sumudu De-
composition method. J Sci Univ Kelaniya, 12, 21-33 (2019).

[19] Mathanaranjan. T, Vijayakumar. D., Laplace Decomposition Method for Time-Fractional
Fornberg-Whitham Type Equations. Journal of Applied Mathematics and Physics, 9, 260-
271 (2021).
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