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Summary: Artificial Intelligence (AI) and its data-centric 
branch of machine learning (ML) have greatly evolved over 
the last few decades. However, as AI is used increasingly in 
real world use cases, the importance of the interpretability of 
and accessibility to AI systems have become major research 
areas. The lack of interpretability of ML based systems is a 
major hindrance to widespread adoption of these powerful 
algorithms. This is due to many reasons including ethical and 
regulatory concerns, which have resulted in poorer adoption 
of ML in some areas. The recent past has seen a surge in 
research on interpretable ML. Generally, designing a ML 
system requires good domain understanding combined with 
expert knowledge. New techniques are emerging to improve 
ML accessibility through automated model design. This paper 
provides a review of the work done to improve interpretability 
and accessibility of machine learning in the context of global 
problems while also being relevant to developing countries. 
We review work under multiple levels of interpretability 
including scientific and mathematical interpretation, statistical 
interpretation and partial semantic interpretation. This review 
includes applications in three areas, namely food processing, 
agriculture and health.

Keywords: Disease detection in agriculture, drug repositioning, 
food processing, interpretation of neural networks, 
metagenomics.

INTRODUCTION 

Artificial intelligence (AI) has seen an explosive growth 
over the last 20 years, largely through recent advances in 
machine learning (ML) – the data-centric branch of AI. A 
data-centric AI system consists of an AI model (a structure 
or architecture) and a method or learning algorithm that 
enables that model to derive usable information from data. 
Sometimes the data are exploratory, like the genomic 
data arriving from different parts of the world about 
constantly mutating viruses. To discover the presence of 
new variants or labels, we can feed an AI model with 
such uninterpreted data, so that researchers will be able 
to use this AI model to assign labels. Such AI models 
need unsupervised learning (UL) algorithms to extract 
information from unlabelled and uninterpreted data. We 
could also ask those researchers themselves to label the 
data with appropriate variant labels, and feed both labels 
and genomic data to an AI model that can then use a 
supervised learning algorithm like deep learning (DL), 
so that it can serve as a predictor for known variants 
of the virus. If such an AI model of sufficient strength 
requires it to be large, deep and complex, we call it a 
deep neural network (DNN).  Shallow neural networks, 
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commonly referred to as neural networks (NNs) are data 
driven mathematical models consisting of about three 
layers of artificial neurons or nodes (several linear and 
nonlinear processing elements) which are interconnected 
through weighted connections. 

	 Popular models of AI, in particular, ML based models 
have significant deficiencies preventing its broader 
application. For example, they are mostly uninterpretable 
(Halgamuge, 2021). This paper addresses some of these 
in the context of several major global problems in the 
post-pandemic world with relevance to developing 
countries.

	 Achieving interpretability in ML will promote broader 
and effective use of ML, by answering core questions 
about traceability, accountability, ethical compliance, 
and inherent biases. Serious concerns remain about 
the reliability of ML systems in certain contexts. For 
example, the claim about achieving self-driving status for 
vehicles has not allayed public concerns. Explainable AI 
(XAI) methods can help in some applications although 
may not provide a full explanation about the decision 
process of the ML model. 

There are two main strategies that exist for achieving 
higher accessibility through automated ML model 
design. In “growing the ML model from scratch” the 
ML model starts with a default simple model and 
grows until its capacity is enough to solve the problem. 
This approach has been used in both supervised and 
unsupervised learning-based ML systems. In the “search 
for the best among selected candidates” approach, also 
called neural architecture search (NAS), the best ML 
model is selected from a list of candidate solutions. The 
former is applicable to both labelled and unlabelled data, 
whereas the latter is generally confined to labelled data.

	 Most ML research on increasing interpretability 
of ML systems on the Y-axis and accessibility through 
increased AI model design automation on the X-axis 
(Figure 1) lies along or close to the axes. Research into 
interpretable neural networks designed with minimal 
expert intervention (FAIR AI) will increasingly close a 
significant knowledge gap, also informed by relevant 
studies, for example, ML with continuous and life-long 
learning capability (Senanayake et al., 2021).  
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Variant 1, 2, or 3. Such AI models need unsupervised learning (UL) algorithms to extract information from

unlabelled, uninterpreted data. We could also ask those researchers themselves to label data with appropriate

variant labels, and feed both labels and genomic data to an AI model that can then use a supervised learning

algorithm like deep learning (DL), so that it can serve as a predictor for known variants of the virus. If such an

AI model of sufficient strength requires it to be large, deep and complex, we call it a deep neural network (DNN).

A shallow neural network, commonly refer to as Neural Networks (NNs) are data driven mathematical models

consisting of about three layers of artificial neurons or nodes (several linear and nonlinear processing elements)

which are interconnected through weighted connections.

Figure 1 – Contributions of the Paper and Fair, Accessible, Interpretable and Reproducible (FAIR) AI adapted
from (Halgamuge, 2021)

Popular models of AI, in particular, ML based models have significant deficiencies preventing its broader

application. For example, they are mostly uninterpretable (Halgamuge, 2021). This paper addresses some of

these in the context of several major global problems in the post pandemic world also relevant to developing

countries.

Achieving interpretability in ML will promote broader and effective use of ML, by answering core questions

about traceability, accountability, ethical compliance, and inherent biases. Serious concerns remain about the

reliability of ML systems in certain contexts. For example, Tesla’s 2021 claim about achieving self-driving

vehicles has not allayed public concerns. Explainable AI (XAI) methods can help in some applications although

may not provide a full explanation about the decision process of the ML model.

Figure 1:	 Contributions of the Paper and Fair, Accessible, Interpretable and Reproducible 
(FAIR) AI adapted from Halgamuge (2021)

This paper is organised with an example of scientific 
interpretation capability of ML models using differential 
equations followed by relevant applications of ML in 
three areas of importance, namely Food Processing, 
Agriculture and Health: examples of uninterpretable ML 
models applied to food drying, partially interpretable 
convolutional neural networks (CNN) and XAI in plant 

disease detection including in rice cultivation, safety 
of taking multiple pharmaceutical drugs and reuse of 
existing drugs for new diseases using semi-automated 
unsupervised ML model construction and shedding 
some light into yet largely unexplored world of microbes 
including viruses using semi-automated ML model 
construction. 
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SCIENTIFIC INTERPRETATION OF DATA USING 
DIFFERENTIAL EQUATIONS

Supervised learning problems generally focus on 
learning a relationship that maps a given input space 
to an output space based on input-output pairs. This 
involves training a model to learn this relationship by 
looking at a labelled dataset. Although most trained 
models including neural networks can be represented 
as a mathematical function, interpreting this function 
would typically be quite challenging. Only a very few 
models such as linear regression models will have an 
interpretable mathematical equation. CNNs are ML 
models with some (pictorial) interpretability. It can be 
noted that most equations modelling real-world problems 
do not have a very large number of terms (Brunton 
et al., 2016). Furthermore, differential equations (DE) 
are commonly seen as governing equations of dynamical 
systems. These DEs are generally derived using first 
principles. Recently there has been a focus on recovering 
governing differential equations from observation data of 
dynamical systems.

	 Udrescu and Tegmark (2020) propose a recursive 
multi-step method to search through the possible space 
of equations that fit a given dataset. It uses properties 
commonly found in real-world physics equations to reduce 
the search space. These include symmetry, separability, 
compositionality and more simplifying properties. This 
paper uses a neural network as a function approximator 
to discover some of these simplifying properties. The 
final equation is discovered using a brute force search 
across the simplified solution space. Udrescu et al. 
(2020) improve upon this approach to discover Pareto-
optimal formulae (complexity vs accuracy).

	 Brunton et al. (2016) approach the same problem 
by using sparse regression techniques to circumvent the 
problem of searching through a large space of possible 
solutions. Here, the differential equation is assumed to be 
in the form of, 
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equations that fit a given dataset. It uses properties commonly found in real-world physics equations to reduce

the search space. These include symmetry, separability, compositionality and more simplifying properties. This

paper uses a neural network as a function approximator to discover some of these simplifying properties. The

final equation is discovered using a brute force search across the simplified solution space. (Udrescu et al., 2020)

improves upon this approach to discover Pareto-optimal formulae (complexity vs accuracy).

(Brunton et al., 2016) approaches the same problem by using sparse regression techniques to circumvent the

problem of searching through a large space of possible solutions. Here, the differential equation is assumed to be

in the form of,

𝑑𝑑
𝑑𝑑𝑑𝑑𝑋𝑋 𝑋𝑋 = 𝑓𝑓(𝑋𝑋 𝑋𝑋 )

Here X is the independent variable and f(X(t)) is assumed to be a linear combination of non-linear functions of

X. A library 𝜃𝜃 𝜃𝜃 of possible terms are constructed using these non-linear functions. The resultant formulation is,

𝑑𝑑
𝑑𝑑𝑑𝑑𝑋𝑋 𝑋𝑋 = 𝜃𝜃 𝑋𝑋 Ε

Here, Ε includes the coefficients corresponding to each library term. The problem is now in the form of a linear

regression problem. The paper uses a sparse regression algorithm to solve for the coefficients since real life

differential equations typically do not have many terms in the right-hand side. This idea is improved and applied

to learn partial differential equations (PDE) in (Rudy et al., 2017). (Zhang & Lin, 2018) proposes a method to

use Bayesian sparse regression to increase the robustness of the learned equation and quantify the uncertainty of

the solution.

Neural networks are also used in recent work to recover governing differential equations from observed data.

(Martius & Lampert, 2016) uses neural network algebra to learn equations through backpropagation. A shallow

neural network is used with custom activation functions which include multiplications, trigonometric functions

and identity functions. Sparsity promoting L1 regularization is used to promote learning a simple equation with a

low number of terms. (Sahoo et al., 2018) proposes a method to extend the class of the learnable equations using

an equation learning network to include divisions. (Long et al., 2019) proposes a deep neural network

architecture to discover time dependent PDEs from observed data. This architecture proposes the use of a 𝛿𝛿 -

block, which uses convolutions to approximate differential operators and a symbolic neural network to

approximate the non-linear response function. The approximation framework is as follows.

𝑈𝑈� 𝑡𝑡 + 𝛿𝛿𝛿𝛿 ≈ 𝑈𝑈� 𝑡𝑡 + 𝛿𝛿𝛿𝛿 ∗ 𝐹𝐹
Here, 𝑈𝑈�(𝑡𝑡) is the predicted value at time t and F is the PDE-NET approximation. The architecture of a 𝛿𝛿-block is

shown in Figure 2. A single 𝛿𝛿-block can only approximate one-step dynamics, meaning that it is prone to error
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Where, E includes the coefficients corresponding to each 
library term. The problem is now in the form of a linear 
regression problem. The paper uses a sparse regression 
algorithm to solve for the coefficients since real life 
differential equations typically do not have many terms 
in the right-hand side. This idea is improved and applied 
to learn partial differential equations (PDE) in Rudy et al. 
(2017). Zhang and Lin (2018) propose a method to use 
Bayesian sparse regression to increase the robustness of 
the learned equation and quantify the uncertainty of the 
solution.

	 Neural networks are also used in recent work to 
recover governing differential equations from observed 
data. Martius and Lampert (2016) used neural network 
algebra to learn equations through backpropagation. A 
shallow neural network is used with custom activation 
functions which include multiplications, trigonometric 
functions and identity functions. Sparsity promoting 
L1 regularization is used to promote learning a simple 
equation with a low number of terms. Sahoo et al. (2018) 
proposes a method to extend the class of the learnable 
equations using an equation learning network to include 
divisions. Long et al. (2019) propose a deep neural 
network architecture to discover time-dependent PDEs 
from observed data. This architecture proposes the use 
of a δ-block, which uses convolutions to approximate 
differential operators and a symbolic neural network 
to approximate the non-linear response function. The 
approximation framework is as follows:
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accumulation over time. Multiple 𝛿𝛿 -blocks with shared parameters are stacked to approximate multi-step

dynamics and reduce error accumulation.

Figure 2- PDE-NET 2.0 (Long, Lu, & Dong, 2019)

Most works in this area focus on learning a certain type of ordinary differential equation (ODE) or PDE.

However, when applying these methods to real scenarios, we may not know the type of equation in advance.

Furthermore, most of the approaches in the literature can only learn 1st order differential equations. Therefore,

future work could focus on learning higher order DEs. Scalability is also a challenge in current methods and is

especially evident in NN based equation learning algorithms. These are quite resource intensive and in certain

cases require GPUs to run. Moreover, only a very few works explore methods of uncertainty quantification of

the solution. This is also a potential research direction.

MACHINE LEARNING FOR FOOD PROCESSING AND DRYING

Food security is a major concern around the world as foods have high nutritional value and are an essential part

of everyday life. However, most plant-based foods are highly perishable and about one-third of global food

production is lost annually due to inadequate processing (Vilariño et al., 2017). This issue is amplified in

developing countries where about 40% of seasonal fruits and vegetables are wasted (Karim & Hawlader, 2005).

Drying is a major food preservation and processing technique which aims to remove moisture, preventing

microbial spoilage (Kumar et al., 2015), thus adding value to a product, permitting early harvest, reducing

shipping weights and costs, minimizing packaging requirements and increasing shelf-life (Zielinska et al., 2013).

However, drying is highly complex involving interconnected simultaneous momentum, heat and mass transfer

with time-varying physiochemical and anisotropic structural changes which depend on the dynamic product-

drying environment interactions occurring (Welsh et al., 2018; Khan et al., 2020). Additionally, the underlying

mechanisms, which originate within the materials cells, are still not well understood. Due to these complexities,

optimising the design of dryers and process conditions are challenging and expensive. AI, specifically

uninterpretable ML, has demonstrated great potential to facilitate innovation and optimisation for the processing

of foods, providing a low-cost alternative to the current design modelling approaches and in-line process

controllers. Converting these ML models to interpretable ML models will have significant advantages.

Figure 2:	 PDE-NET 2.0 (Long et al., 2019)
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equations that fit a given dataset. It uses properties commonly found in real-world physics equations to reduce

the search space. These include symmetry, separability, compositionality and more simplifying properties. This

paper uses a neural network as a function approximator to discover some of these simplifying properties. The

final equation is discovered using a brute force search across the simplified solution space. (Udrescu et al., 2020)

improves upon this approach to discover Pareto-optimal formulae (complexity vs accuracy).

(Brunton et al., 2016) approaches the same problem by using sparse regression techniques to circumvent the

problem of searching through a large space of possible solutions. Here, the differential equation is assumed to be

in the form of,

𝑑𝑑
𝑑𝑑𝑑𝑑𝑋𝑋 𝑋𝑋 = 𝑓𝑓(𝑋𝑋 𝑋𝑋 )

Here X is the independent variable and f(X(t)) is assumed to be a linear combination of non-linear functions of

X. A library 𝜃𝜃 𝜃𝜃 of possible terms are constructed using these non-linear functions. The resultant formulation is,

𝑑𝑑
𝑑𝑑𝑑𝑑𝑋𝑋 𝑋𝑋 = 𝜃𝜃 𝑋𝑋 Ε

Here, Ε includes the coefficients corresponding to each library term. The problem is now in the form of a linear

regression problem. The paper uses a sparse regression algorithm to solve for the coefficients since real life

differential equations typically do not have many terms in the right-hand side. This idea is improved and applied

to learn partial differential equations (PDE) in (Rudy et al., 2017). (Zhang & Lin, 2018) proposes a method to

use Bayesian sparse regression to increase the robustness of the learned equation and quantify the uncertainty of

the solution.

Neural networks are also used in recent work to recover governing differential equations from observed data.

(Martius & Lampert, 2016) uses neural network algebra to learn equations through backpropagation. A shallow

neural network is used with custom activation functions which include multiplications, trigonometric functions

and identity functions. Sparsity promoting L1 regularization is used to promote learning a simple equation with a

low number of terms. (Sahoo et al., 2018) proposes a method to extend the class of the learnable equations using

an equation learning network to include divisions. (Long et al., 2019) proposes a deep neural network

architecture to discover time dependent PDEs from observed data. This architecture proposes the use of a 𝛿𝛿 -

block, which uses convolutions to approximate differential operators and a symbolic neural network to

approximate the non-linear response function. The approximation framework is as follows.
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Here, 𝑈𝑈�(𝑡𝑡) is the predicted value at time t and F is the PDE-NET approximation. The architecture of a 𝛿𝛿-block is

shown in Figure 2. A single 𝛿𝛿-block can only approximate one-step dynamics, meaning that it is prone to error

-block is shown in Figure 2. A single-block can only 
approximate one-step dynamics, meaning that it is prone 
to error accumulation over time. Multiple-blocks with 
shared parameters are stacked to approximate multi-step 
dynamics and reduce error accumulation.

	 Most works in this area focus on learning a certain 
type of ordinary differential equation (ODE) or PDE. 
However, when applying these methods to real scenarios, 
we may not know the type of equation in advance. 
Furthermore, most of the approaches in the literature 
can only learn 1st order differential equations. Therefore, 
future work could focus on learning higher order DEs. 
Scalability is also a challenge in current methods and 
is especially evident in NN based equation learning 
algorithms. These are quite resource intensive and in 
certain cases require GPUs to run. Moreover, only a very 
few works explore methods of uncertainty quantification 
of the solution. This is also a potential research direction.

MACHINE LEARNING FOR FOOD PROCESSING 
AND DRYING

Food security is a major concern around the world as 
foods have high nutritional value and are an essential 
part of everyday life. However, most plant-based foods 
are highly perishable and about one-third of global food 
production is lost annually due to inadequate processing 
(Vilariño et al., 2017). This issue is amplified in 
developing countries where about 40% of seasonal fruits 
and vegetables are wasted (Karim & Hawlader, 2005). 
Drying is a major food preservation and processing 
technique which aims to remove moisture, preventing 
microbial spoilage (Kumar et al., 2015), thus adding 
value to a product, permitting early harvest, reducing 
shipping weights and costs, minimizing packaging 
requirements and increasing shelf-life (Zielinska et al., 
2013). However, drying is highly complex involving 
interconnected simultaneous momentum, heat and 
mass transfer with time-varying physiochemical and 
anisotropic structural changes which depend on the 
dynamic product-drying environment interactions 
occurring (Welsh et al., 2018; Khan et al., 2020). 
Additionally, the underlying mechanisms, which 
originate within the materials cells, are still not well 
understood. Due to these complexities, optimising the 
design of dryers and process conditions is challenging 
and expensive. AI, for example, uninterpretable ML, 

has demonstrated great potential to facilitate innovation 
and optimisation for the processing of foods, providing 
a low-cost alternative to the current design modelling 
approaches and in-line process controllers. Converting 
these ML models to interpretable ML models will have 
significant advantages.  

Uninterpretable Machine Learning 

ML (e.g. NN) is able to investigate, model and predict the 
nonlinear time-varying behaviour of food material during 
drying (Angermueller et al., 2016). The three main parts 
of NN represent the input layer (material definition and/
or process conditions), the hidden layer (consisting of 
nodes and weighted connections) and the output (drying 
rate, moisture content evolution and/or quality). The 
approach utilises experimental examples of the system 
which is being modelled (training data) to optimize the 
parameters including weights of the connections between 
neurons to predict the complex outputs. Over the years 
various NN models have been applied in food drying for 
predicting complex outputs for various materials (Sun et 
al., 2019) and various drying technologies (Sarkar et al., 
2020). Generally, ML is applied to predict four types of 
outputs for food processing, the evolution of moisture 
and temperature, morphological/structural changes, 
transfer coefficients and quality changes.  

	 Common complex outputs predicted through ML 
models include the moisture and temperature evolution 
of the material and the drying rate/transfer coefficients 
of a dryer. Predicting such complex outputs can provide 
insight into the drying time and the energy consumption 
of a dryer. Chasiotis et al. (2020) utilised a NN to 
predict the moisture content evolution of convective 
drying cylindrical quince slices. This work utilised 1372 
experimental samples split between training data and 
cross validation data to consider three input variables 
(temperature, flow velocity and time) to predict the 
samples' moisture content. The results showed good 
agreement between the predicted and experimental 
values. Çerçi and Daş (2019) applied a NN and decision 
tree to predict the heat transfer coefficient for natural and 
force convection, concluding NN was more successful 
in estimating the heat transfer coefficient. Saraceno et 
al. (2012) investigated and compared three different 
modelling approaches, a thin-layer model, a NN and a 
hybrid neural model for two different vegetables with 
different characteristic dimensions for a wide range of 
process conditions. Their work demonstrated that pure 
neural models gave very accurate predictions when 
modelling/reproducing known data/process conditions. 
However, the accuracy of the NN model significantly 
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decreased when attempting to extrapolate/apply the 
model to unknown scenarios/process conditions.  

	 The morphological and quality changes food material 
experiences during drying have also been predicted 
through ML techniques. Scala et al. (2013) constructed 
a NN model for predicting the quality characteristics of 
Granny Smiths apples during convective dehydration. 
The work investigated experimental data from three 
different drying temperatures (40, 60 and 80°C) drying at 
three air flow rates (0.5, 1.0 and 1.5 m/s) and effectively 
predicted the colour, water capacity and total phenolic 
content of the samples. Additionally, the work identified 
the optimal drying conditions within the experimental 
process conditions. Chen and Martynenko (2013) utilised 
computer vision to evaluate the drying rate, shrinkage 
and colour changes of two varieties of blueberry, though 
the accuracy of the shrinkage measurements was limited 
by the pixel resolution of the camera and the accuracy 
of the colour measurement was limited by the quality of 
illumination and colour reproduction. Recently, Sinha 
and Bhargav (2022) developed an ANN model to predict 
key properties related to shrinkage, specifically solid 
density, initial porosity and initial water saturation of a 
given food material, using temperature and moisture data 
from a set of simple experiments. The work demonstrates 
how a NN model can serve as an efficient indirect method 
of property estimation in food material. 

	 ML techniques have also been applied to calculate 
key transport properties. Mariani et al. (2008) developed 
an NN-based inverse method to estimate the apparent 
diffusivity of bananas at different drying temperatures. 
The work found that a small change in drying 
temperature and moisture content caused a significant 
change in bananasʼ apparent diffusivity. Sablani and 
Rahman (2003) developed an NN model for predicting 
the thermal conductivity of various foods in terms of 
moisture content, temperature and apparent porosity. NN 
models have demonstrated great predictive capabilities 
in comparison to other statistical approaches. 

	 Although AI and ML techniques provide a low-cost 
alternative to facilitate innovation and optimisation for 
the processing of foods, applying ML to food processing 
does have some challenges. ANN is considered to be 
a ‘black box’ approach (i.e. uninterpretable) where the 
user cannot see what is happening during the simulation 
which is not ideal for understanding what is occurring 
during drying. Additionally, ML is a data-driven 
approach where the accuracy of the model heavily 
depends on acquiring a large comprehensive training 
dataset. However, food processing data is often scarce 

and obtaining large datasets is expensive due to the 
resources and costs involved in measuring this data 
experimentally. As a result, most NN models in literature 
have been constructed using small datasets and therefore 
their accuracy significantly decreases when applying 
the model to data outside the training observatory data 
(Saraceno et al., 2012). Recently, a new class of NN 
or deep learning, physics-informed neural networks 
(PINN), has emerged that can seamlessly integrate 
training data and complex mathematics to optimise 
a loss function. By incorporating prior knowledge, 
it minimises the need to have a large observatory 
training dataset for maintaining the high accuracy of 
the predictive model. Hence, overcoming the main 
challenges for AI in food processing. A PINN model 
can be trained with additional information obtained by 
enforcing physical laws with mathematical governing 
equations (Karniadakis et al., 2021). PINN models have 
been constructed for the deformation of elastic plates 
(Li et al., 2021), engineering heat transfer applications 
(Zobeiry & Humfeld, 2021), modelling fluid mechanics 
(Raissi et al., 2020), understanding permeability and 
viscoelastic modulus properties (Yin et al., 2021) and 
to solve forward and inverse problems (Zhang et al., 
2019). Though demonstrating great potential, the PINN 
modelling approach has not been applied to food 
drying yet. For additional information on AI for the 
application of food processing, readers are directed to the 
comprehensive reviews of Sun et al. (2019), Khan et al. 
(2020) and Nayak et al. (2020). More insights into PINN 
modelling approaches can be found in Karniadakis et al. 
(2021). 

MACHINE LEARNING IN AGRICULTURE IN 
SRI LANKA

Sri Lanka is a tropical country with a high potential for 
cultivating and processing a variety of crops. Although 
the open-field agricultural system is the most prominent 
in Sri Lanka, the sector is increasingly enabled by the 
recent growth of IoT applications and AI systems 
in the field. Greenhouse agriculture is an emerging 
subsector today that attempts to maximize the harvests 
under a protected cultivation environment within the 
limited space. The recent government restrictions on 
chemical fertilizers have regulated the local agriculture 
industry to look for optimal fertilizer combinations that 
maximize yield in open-field systems and green-house 
environments. As the research of different permutated 
fertilizer combinations increases, numerous plant 
diseases and nutrient deficiencies receive increased 
attention from ML researchers.
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Rice is one of the most popular food crops in the World 
and one of the main grains used in Asia including in Sri 
Lanka. Jaffna is located in the Northern tip of Sri Lanka 
at a longitude of 79° 45′ – 80° 20′ and east latitude of 
9° 30′ – 9° 50′ with a population of around 700,000. The 
agriculture and fishery sectors play a crucial role in the 
gross production of Jaffna. Since the soil and climatic 
conditions are favourable to cultivate a wide range of 
crops including paddy, agriculture plays a significant 
role in the lives of people in Northern Sri Lanka. Various 
diseases in paddy agriculture have been seriously 
affecting rice production and constitute a big challenge 
for the agricultural community to ensure food security. 
These diseases include rice blast, bacterial leaf blight, 
bacterial leaf streak, sheath blight, seedling blight, 
false smut, rice hispa, sheath rot, root knot, leaf streak, 
yellow stem borer, brown spot, and brown planthopper 
(Figure 3) mainly caused by viruses, bacteria, fungi, etc. 
Diseases of rice plants could be affected by different 
factors, such as fertilizers, nutrients, water management, 
climatic conditions, lighting conditions, humidity, and 
farming conditions. The detection of such rice plant 
diseases is normally performed on visual assessment 
of the symptoms which is subjective, time-consuming 
even for well-experienced experts and is prone to 
error. Automating such visual assessment will provide 
information for the prevention and control of rice 
diseases through which the quality and the quantity of rice 
production can be increased by reducing the operation 
costs. Thus, the automation will contribute significantly 
to the economic growth of Sri Lanka.

Explainable AI for plant disease classification

The diagnosis of plant nutrient deficiencies at early 
stages is essential as it indicates the impact of the applied 
fertilizer combination on plant growth. This deficiency 
could be a reason for overdose or lack of a particular 
nutrient or a combination. These deficiencies could be 
mainly seen in the plant’s stems, leaves, or terminal 
buds (Figure 3). The association of these symptoms to 
different nutrient deficiencies requires expert knowledge. 
A data-centric approach is to use a classification model 
trained on labelled data. Image processing applications 
in the field of agriculture help to identify and diagnose 
crop diseases, pests and weeds, and the classification 
of agricultural products. CNN is one of the most 
effective methods of image processing which extracts 
image features, achieves high-level fusion of semantics 
and deep extraction of features through multilayer 
networks. Due to inherent learning capability, CNN 
is the prominently used machine learning model for 

plant diseases classification. The convolution operation 
identifies the local features and through the processing in 
the subsequent layers of CNN, it hierarchically develops 
motifs and parts that could represent the symptoms of 
a particular disease. Despite the high classification 
accuracy, the CNN architecture is further explored to shed 
some light into the explanation or interpretation of its 
decision making. While techniques such as temperature 
scaling (Guo et al., 2017) have been used to calibrate 
the CNN confidence scores, the explainable artificial 
intelligence models (XAI) have been hybridised with the 
CNN architectures (XAI-CNN) to provide explanations 
for such classifications. In general, these XAI models 
relate to or explain the class labelling by identifying 
the mostly contributed regions of the input image. The 
more commonly used XAI techniques are reviewed next 
emphasizing the main principle behind them. 

Figure 3:	 Examples of common rice diseases (courtesy of http://
www.knowledgebank.irri.org/ )
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Figure 3- Examples of common rice diseases (courtesy of http://www.knowledgebank.irri.org/ )

Generally, XAI techniques that explain single disease predictions are of great interest in plant disease

classification. CAM (Zhou et al., 2016), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017) are

commonly used XAI models which provide justifications by generating local attention maps or by modelling

feature importance. CAM (Class Activation Map) and its derivatives such as GRAD-CAM (Selvaraju et al.,

2017) and GRAD-CAM++ (Chattopadhay et al., 2018) are visual explanation techniques that can identify

discriminative image areas by locating the pixel groups responsible for influencing the association between a

given input image and a particular class label. These pixels are determined by projecting classification layer

weights or classification layer ‘gradients of activation’ to the convolution feature maps. In contrast, LIME

attempts to develop linear (interpretable) models over the complex perceptron model by identifying significant
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Generally, XAI techniques that explain single disease 
predictions are of great interest in plant disease 
classification. CAM (Zhou et al., 2016), LIME (Ribeiro 
et al., 2016), and SHAP (Lundberg & Lee, 2017) are 
commonly used XAI models which provide justifications 
by generating local attention maps or by modelling 
feature importance. CAM (Class Activation Map) and 
its derivatives such as GRAD-CAM (Selvaraju et al., 
2017) and GRAD-CAM++ (Chattopadhay et al., 2018) 
are visual explanation techniques that can identify 
discriminative image areas by locating the pixel groups 
responsible for influencing the association between a 
given input image and a particular class label. These 
pixels are determined by projecting classification layer 
weights or classification layer ‘gradients of activation’ 
to the convolution feature maps. In contrast, LIME 
(Local Interpretable Model - Agnostic Explanations) 
attempts to develop linear (interpretable) models over 
the complex perceptron model by identifying significant 
features of a data sample. It modifies a single data sample 
by tweaking the feature values (or identifying super-
pixels) to understand the relationship between input 
and the predicted output. By doing so, LIME provides 
a list of explanations reflecting the contribution of each 
feature in the prediction of the disease class of a given 
data sample. In SHAP (Shapley Additive Explanations), 
the feature values of a data sample act as players in 
a coalition. Shapley value is the average marginal 
contribution of a feature value. These values calculate 
the feature importance and explain the association of the 
data sample to a particular class label. When applying 
these XAI models, several challenges are recognized. In 
LIME, it is hard to model non-linear relationships with 
linear models even by tweaking features or identifying 
the super-pixels. The perturbations of a single data point 
with random noises would not cover the variations in the 
dataset. In SHAP, the Shapley values provide additive 
contributions of explanatory features, which might be 
misleading if the model is not additive. Further, it is not 
mathematically feasible to calculate the Shapley values 
for all the classification problems. Therefore, mainly 
CAM-based XAI techniques have been applied in plant 
disease classification (Liu et al., 2020) (Ennadifi et al., 
2020) demonstrating significant improvements in the 
explainability of the class-label predictions. 

	 When employing CNN together with XAI models, 
few challenges are recognised. First, publicly available 
datasets are small and often imbalanced leading to 
models getting overfitted even if the data are augmented 
with various augmentation techniques. Therefore, when 
applying XAI techniques on small and imbalanced 
datasets, CAM and GRAD-CAM approaches do not 

perform well because it becomes difficult to locate the 
correct region of the convolution feature maps just by 
activating the classification layer of these models. This 
problem gets severe as the number of classes increases. 
Therefore, developing large balanced datasets is vital.

	 Second, a deficiency could be associated with multiple 
stages: early-stage, mild-stage, and severe stage, and 
symptoms of several deficiencies could be overlapped 
making the classification challenging. For example, there 
could be both Ca+ and B deficiency; their symptoms 
could not be separable at their early stages but separable 
when they reach the mild stage. Therefore, applying CNN 
models at different stages of the deficiency could result in 
different predictions with a low confidence score. Using 
XAI models on poorly calibrated models further decays 
the explanations’ accuracy. Therefore, reasons based on 
feature activations or feature importance are insufficient 
for plant disease classification. It requires a much richer 
analysis of the features to map their activation to more 
probable two or three classes (including the predicted) 
based on the stages of the deficiency and growth stage of 
the plant.

	 Although existing XAI techniques give explanations 
in terms of feature activation and importance that can be 
interpreted by machine learning researchers they cannot 
fully explain the decision-making process in terms of 
agricultural technology and therefore of less use in 
real applications in disease recognition in agriculture. 
Therefore, these illustrations must map into human-
understandable explanations for example by integrating 
the concepts of expert systems on the activated 
convolution features of XAI.   

Rice disease detection using convolutional neural 
networks

Due to the inherent ability of the CNN model to show 
layer by layer pictorial explanation of how an input 
image is processed to reach the classification outcome, it 
is a good candidate to use in detecting rice diseases even 
without hybridizing with XAI.  

	 Jiang et al. (2020) proposed a rice disease recognition 
model that combines CNN and support vector machine 
(SVM) to identify four types of rice diseases. Images 
were pre-processed by applying mean-shift algorithm to 
segment lesions from rice leaf disease. From the images 
of leaf lesions shape features such as area, roundness and 
shape complexity were extracted, and the colour features 
were extracted using CNNs by converting RGB colour 
space into HSI and YCbCr colour space. The extracted 
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features were then classified by an SVM with RBF 
kernel due to the small number of sample images. They 
collected a total of 8911 images from rural farmland 
and from rice leaf disease atlas in which 6637 images of 
disease rice were manually cropped. A classification rate 
of 96.8% was reported.

	 Anandhan and Singh (2021) proposed a rice disease 
recognition model by comparing Mask R-CNN and 
Faster R-CNN algorithms to identify five types of rice 
diseases. Images were pre-processed using a multistage 
median filter to reduce noise. They implemented the 
model using ResNet-50 (Residual Neural Network) as 
the backbone and optimised the model using a stochastic 
gradient descent optimiser. In each iteration, a mini batch 
of size 60 was used. The learning rate was set to 0.01 
with weight decay fixed to 0.0001. They collected about 
1500 images from rice plants in the region under different 
weather conditions and images were manually annotated 
for diseases. A classification rate of 87.5% was reported 
for Mask R-CNN which outperforms Faster R-CNN.

	 Liang et al. (2019) proposed a rice blast recognition 
method using CNN. In their work, high-level features 
extracted by CNN were compared with handcrafted 
features: Harr-wavelet Transform and local binary 
patterns histograms (LBPH) in rice blast recognition. In 
addition to using CNN in the recognition task, the extracted 
features were also classified by SVM using an RBF kernel. 
Moreover, they created a rice blast disease image set that 
is made publicly available (http://www.51agritech.com/
zdataset.data.zip ). Images encompassing 2902 negative 
and 2906 positive samples were considered for testing 
and training a CNN. Quantitative analysis results show 
that CNN with Softmax and CNN with SVM have almost 
the same performance. A classification rate of 95.83% 
was reported for CNN showing better performance for 
the said recognition task. 

	 Zhou et al. (2019) proposed an approach to identify 
three types of rice diseases based on FCM-KM and 
Faster R-CNN fusion techniques. Images were pre-
processed using a weighted multilevel median filter for 
noise removal. Thereafter, Otsu threshold segmentation 
algorithm (Otsu, 1979) was applied to segment lesions 
from leaf disease images. In order to extract rice disease 
characteristics, the FCM-KM was used to reset the 
bounding box size in Faster R-CNN for the convergence 
to be accelerated. The optimal value of K in K-means 
was selected with the maximum and minimum distance 
algorithm and where those initial cluster centres should 
be positioned. In addition, the dynamic population 
firefly algorithm based on the chaos theory was applied 
to the clustering process to jump out of the local 

optimum and obtain faster convergence. The FCM-KM 
and Faster R-CNN were applied to extract the disease 
characteristics and classify the images for pests and 
diseases. An image set consisting of 3010 images was 
tested and a classification rate of 97.2% was reported for 
the proposed method.

	 Sreevallabhadev (2020) proposed a method to 
identify rice blast disease by using CNN for feature 
extraction and SVM for classification. Experiments were 
carried out with 60 experimental configurations that 
vary in the choice of deep learning architecture, training 
mechanism, and dataset type. They used approximately 
60,000 images of plant leaves in their original dataset 
(https://www.kaggle.com/abdallahalidev/plantvillage-
dataset) and created three different versions of the 
dataset by considering colour, grayscale and leaf 
segmented images. An AlexNet based on CNN was used 
in extracting the features that are then fed to an SVM 
classifier. A classification rate of 96.8% was reported.

	 It is worth noting that, a majority of the work reported 
in the literature uses the following experimental setups 
and points out that there is a huge room for carrying out 
research in this domain using deep learning approaches.

•	 Evaluate on small scale datasets consisting of 500 to 
5000 images beyond the work in (Sreevallabhadev, 
2020). The small sized datasets directly impact the 
quality of the mapping function approximated by 
neural networks.

•	 Develop models to recognise a few rice diseases 
though there are several known diseases that greatly 
affect the quality and quantity of rice production.

•	 Propose methods mainly using features such as shape, 
texture and colour by the use of histogram-oriented 
gradient (HOG), scale-invariant feature transform 
(SIFT), wavelet, local binary pattern (LBP), HSI and 
YCbCr, CNN, etc.

MACHINE LEARNING IN HEALTH

Drug repositioning and drug interaction 

Drug repositioning and drug interaction prediction are 
two fundamental applications of drug development 
and clinical care that have significant benefits in 
pharmacology. Repositioning of existing drugs can be 
classified as single drug-based repositioning and drug 
combination-based repositioning. Drug combinational 
treatments are identified to be much effective for treating 
some diseases. Moreover, drug-drug interactions (DDIs) 
are likely to occur when a pair of drugs or a combination 
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of drugs are co-administered. Investigating harmful 
DDIs is essential to enhance the effects of clinical care. 

	 In these contexts, the features of existing drugs, such 
as chemical structures, gene expressions, target proteins, 
side effects, indications, etc., are considered to compare 
the pairwise drug similarity (Sun et al., 2016; Hameed 
et al., 2017; 2018) Further, chemical structural data, 
gene expression data, side effect related data and the 
transcriptional responses have been used for predicting 
drug mechanism of action (MoA), i.e., the prediction 
of molecular targets for a particular drug. ‘Connectivity 
Map’ (Lamb et al., 2006) resource, which is frequently 
used in related studies, can be used to find connections 
among small molecules sharing an MoA, chemicals and 
physiological processes, and diseases and drugs.

	 Over the past two decades, machine learning and 
network analysis-based drug repositioning have gained 
popularity. Machine learning approaches incorporate 
clustering, classification and deep learning techniques 
with statistical concepts, whereas network analysis 
approaches represent pharmacological knowledge as 
networks with nodes and edges. In network-based 
analysis, features such as genes, proteins, molecules and 
phenotypes can be used as the nodes. Their functional 
similarities, mode of actions and relationships can be 
represented by the edges which interconnect the nodes.

	 In network-based analysis, techniques such as 
random walk (Zhang et al., 2017), node embedding (Su 
et al., 2021), matrix perturbation (Zhang et al., 2017), 
and Steiner-tree based algorithms (Sun et al., 2016) 
were used. They focus on building a network using 
drug features, actions, and characteristics to predict 
the novel drug-repositioning candidates via drug-drug, 
disease-disease, and drug-disease relationships. Zhu 
et al. (2020) proposed a drug-centric graph model, 
extracted and integrated six drug knowledge bases and 
constructed the drug knowledge graph. They have used 
a path-based data representation method and embedding-
based data representation for comprehensive analysis 
for drug repositioning. Both methods applied to the 
drug knowledge graph evidenced better predictive 
performance on diabetes mellitus treatments. In matrix 
perturbation, novel drug-disease prediction can be 
transformed into a missing link prediction problem. 
In Sun et al. (2016), the prize-collecting Steiner Tree 
approach has proven to be a promising subnetwork 
identification method for drug repositioning. Their 
Physarum-inspired subnetwork identification algorithm 
employed on drug similarity networks has inferred useful 
repositioning candidates for cardiovascular diseases. 

Positive Unlabelled Learning (PUL) is an emerging topic 
in the field of computational drug repositioning and drug 
interaction prediction. The application of PUL for single-
drug repositioning (Mordelet & Vert, 2011; Yang et al., 
2012) and DDI prediction (Hameed et al., 2017; Zheng et 
al., 2019) has shown improved predictive performance. 
PUL enables prioritizing plausible negatives from the 
unlabelled data and improves performance compared 
to randomly selecting negatives from the unlabelled 
data. Mordelet and Vert (2011) introduced a scoring 
function and assigned a specific score to each data pair 
through which the data are sorted in descending order 
to distinguish positives and negatives. Similarly, Yang 
et al. (2012) have classified unlabelled data as reliable 
negatives, likely positives, likely negatives and weakly 
negatives. Hameed et al. (2017) also identified likely 
negatives from the unlabelled DDI pairs to treat as 
negatives when developing the binary classification 
models. These PUL approaches have shown significant 
improvements in final predictions. 

	 Drug combination-based repositioning is emerging 
research in computational drug repositioning. Some recent 
studies focused on computational drug combination-
based repositioning, exploring both therapeutic uses and 
adverse effects of drug combinations. Since there exist 
approximately 16,000 approved drugs on the market 
(Wishart et al., 2018), millions of drug combinations 
can be formed. However, only a small number of drug 
combinations is confirmed as useful with experimental 
research. Therefore, there is a need for accurate and 
reliable approaches to infer repositioning candidates 
from those millions of unlabelled drug combinations. 
PUL can produce significant improvements in drug 
combination-based repositioning as well. Further, 
awareness of harmful DDIs is beneficial to extract the 
most suitable drug combinations for drug repositioning. 

	 Imbalanced data is another challenge arising in 
the drug repositioning and drug interaction prediction 
domains. Mostly balanced training sets are preferred 
in machine learning approaches and in model training 
which can improve the generalizability of the trained 
model by preventing the model from being biased 
towards a particular class. Wei et al. (2013) discovered 
that regardless of the rates of positives and negatives in 
human genome data, support vector machines trained 
on balanced datasets have performed well in binary 
classification. Leevy et al. (2018) have also emphasized 
the issues that may arise with high-class imbalanced 
datasets and have presented the possible solutions that 
can be applied to avoid such potential issues. Further, 
Hameed et al. (2017) emphasized using balanced 
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datasets and employed multiple balanced training sets to 
strengthen the final prediction using ensemble learning 
which can reduce the variance of the final outputs.

Use of interpretable models in microbial data 
including viral DNA

Microbiology is the study of the structure and functions 
of microorganisms and their interactions with other 
microorganisms, species, or environments (Moitinho-
Silva et al., 2017; DiMucci et al., 2018; Xie et al., 
2019). Due to the advancements in microbial sequencing 
technologies, for instance, 16S rRNA sequencing, 
microbial studies generate a massive amount of data 
with a large number of samples and variables. Since 
most microorganisms are not present in most samples, 
the microbial data are also known to be highly sparse 
(Martino et al., 2019), adding to its challenges. 
Therefore, ML has been employed as a powerful tool that 
can analyse and identify significant patterns in microbial 
communities (Ghannam & Techtmann, 2021).  

	 ML algorithms can appear in many forms in 
microbial data analysis. Dimensionality reduction and 
visualization leading to better interpretation of data is 
one such significant manifestation. To better comprehend 
the underlying patterns in the high dimensional microbial 
data, it is necessary to reduce the number of dimensions 
either to visually interpretable two or three dimensions 
or to a reasonable number of dimensions that can be used 
as the input to another ML model. Principal component 
analysis (PCA) (Wold et al., 1987) and principal 
coordinate analysis (PCoA) (Kruskal & Joseph, 1978) are 
two techniques commonly used for the task. However, 
they fail to capture the highly non-linear relationships 
in some microbiome data (Xu et al., 2016). In contrast, 
manifold learning techniques such as Isomap (Tenenbaum 
et al., 2000), Locally Linear Embedding (LLE) (Roweis 
& Saul, 2000), and t-Distributed Stochastic Non-linear 
Embedding (t-SNE) (Van der Maaten & Hinton, 2008) 
can overcome this limitation and therefore are commonly 
used in exploratory data visualization. t-SNE was also 
considered regularly for data visualization in the recent 
past on account of its capability in revealing the local 
structure in high-dimensional data, also bringing its 
attention to microbiome data (Kostic et al., 2015). 
Moving forward, Xu et al. (2020) proposed a t-SNE based 
classification method for compositional microbiome data 
using Aitchison distances as the conditional probabilities. 
By this method, authors were able to achieve better 
classification performance compared with the classifiers 
built in the original high-dimensional space. However, 
t-SNE’s ability in preserving the global structure of data 

has been questioned. Therefore, a recently proposed 
technique, Uniform Manifold Approximation and 
Projection (UMAP) (McInnes et al., 2018) has gained 
popularity due to its capability in preserving the local 
structure while being superior in capturing the global 
structure compared to t-SNE. UMAP’s usefulness in 
revealing composite patterns in microbiome data is 
demonstrated by Armstrong et al. (2021) with their 
application of the algorithm on three different microbial 
datasets. Autoencoders are artificial neural network-based 
algorithms that learn a compressed representation of the 
high dimensional input by minimizing its reconstruction 
error. Recently, autoencoders and their variations (e.g. 
variational autoencoders) have demonstrated their 
usefulness in learning meaningful latent features from 
data (Wang et al., 2014), showing potential to be used 
with microbial data. Therefore, the research in this 
domain would benefit from the concept of interpretable 
neural networks when optimally identifying a suited 
architecture for a particular problem and mapping 
the process of identifying latent patterns to human-
understandable explanations.

	 Metagenomics which is the analysis of DNA 
sequences of multiple species is effectively being used 
for studying microbes, especially viruses (Herath et 
al., 2017).  A metagenomic sample would consist of 
a large number of DNA sequence reads of multiple 
species making it inherently complex to study. Sample 
preparation including the DNA sequencing, reads 
assembly, annotation, and analysis of the data can be 
identified as the key steps in a metagenomic experiment 
and ML models are being used in all the mentioned 
steps (Krause et al., 2020). Metagenomic data can 
be used to infer the microbes’ interactions with their 
host environments, and thereby are considered in 
microbiome biomarker discovery for disease diagnosis 
and monitoring. However, due to their complex nature, 
using metagenomic data in precision medicine as a 
decision support system demands interpretable models 
with conciseness and readability by non-experts (Prifti 
et al., 2020). Predomics, an ML approach inspired by 
microbial ecosystem interactions attempts to develop 
an interpretable and accurate model that can be used to 
analyse any type of data; especially microbiome data. Its 
effectiveness has been demonstrated on liver cirrhosis 
data (Prifti et al., 2020). Furthermore, the effectiveness 
of an interpretable ML approach has been demonstrated 
by a meta-analysis of 1042 fecal metagenomic samples. 
It suggests the use of interpretable models to obtain non-
intrusive predictive disease biomarkers for colorectal 
cancer using metagenomics data of the gut microbiome 
(Casimiro-Soriguer et al., 2022). Furthermore, 
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another recent study suggests that easily accessible 
microbiome samples and their metagenomic analysis 
using interpretable models have the potential for non-
invasive diagnosis of diseases (Carrieri et al., 2021). 
The mentioned study demonstrates it by generating 
explanations for the predictions of skin hydration, age, 
menopausal status, and smoking habits based on leg 
skin microbiome (Carrieri et al., 2021). As such, as 
the sequencing cost is becoming low, low and middle-
income countries can benefit from interpretable models 
for metagenomics data analysis that can be used for 
disease surveillance and anti-viral therapy.

DISCUSSION

Achieving interpretability in AI will promote broader 
and effective use of AI, by answering core questions 
about traceability, accountability, ethical compliance, 
and inherent biases. Several applications of AI reviewed 
in the paper provide different levels of interpretability 
from non to explainable AI. Interpretability can be 
further expanded to achieve linguistic interpretation (e.g. 
Halgamuge, 1997; Cao et al., 2020). 

	 AI models have narrow accessibility as they are 
generally manually designed by experienced AI experts, 
which limits access for fields in which AI experts have no 
knowledge or interest. Some automation in the design of 
AI is used in the drug repositioning and drug interaction 
prediction application described. Other AI methods, for 
example, evolutionary algorithms, can be used to design 
AI systems automatically (Cao et al., 2020). There is 
vast untapped potential: for medical breakthroughs, 
distribution and use of scarce resources, forecasting with 
unheard-of accuracy in natural and economic domains, 
etc, when both interpretability and accessibility of AI 
systems can be combined as shown for small scale neural 
networks in Halgamuge (1997). 
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