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Abstract: Hybrid Titanium dioxide/Poly(3-hexylthiophene) heterojunction solar cells have gained
research interest as they have the potential to become cost-effective solar technology in the future.
Limited power conversion efficiencies of about 5–6% have been reported so far, and an enhancement
in efficiency was achieved through the engineering of the interface between Titanium dioxide (TiO2)
and Poly(3-hexylthiophene) (P3HT). Evolution of this solar cell technology is relatively slow-moving
due to the complex features of the metal oxide-polymer system and the limited understanding of the
technology. In this review, we focus on recent developments in interface modified hybrid Titanium
dioxide/Poly(3-hexylthiophene) solar cells, provide a short discussion on the working principle,
device structure with interface modifiers, and summarize various types of interface modifiers studied
to enhance the photovoltaic performance of hybrid TiO2/P3HT heterojunction solar cells. Further,
we discuss the key factors influencing the power conversion efficiency and the role of a variety
of interface modifiers in this regard. Finally, the challenges and perspectives related to hybrid
TiO2/P3HT heterojunction solar cells are also explored.

Keywords: hybrid solar cells; interfacial modifiers; Titanium dioxide; Poly(3-hexylthiophene);
working principle; self-assembled monolayers; insulating/semiconducting layers; carbonaceous
materials; small molecule sensitizers; charge transport; light harvesting properties

1. Introduction

Molecular electronic materials, such as dyes, conjugated polymers, and small molecules,
are gaining much interest for applications in photovoltaics [1,2]. In this regard, the organic
photovoltaics (OPVs) have attracted much attention due to their features such as low
cost, flexibility, ease of fabrication, and large field of application areas [3–9]. In particular,
hybrid and dye synthesized solar cells are the main focus in the field of OPVs [10–13]. Hy-
brid polymer/nanocrystalline solar cells are good and effective model systems to analyze
nanostructured solar cell technologies. With fewer junctions compared to other OPVs, a
small alteration in the material structures will result in vast variations in the performance
parameters. Therefore, these hybrid solar cells are one of best model structures to study the
performance of new dyes, perovskite materials, surface modifiers, and dopants. Herein,
we have focused on recent enhancements in interface modifications carried out to enhance
the efficiency of hybrid Titanium dioxide/Poly(3-hexylthiophene) solar cells.

The blend of conjugated polymers with nanostructured metal oxides represent promis-
ing candidates for hybrid solar cells since these exhibit high solar energy conversion with
low cost [14–16]. Typically, hybrid solar cells are made up of a combination of both inor-
ganic and organic materials [17–19]. They consist of a conjugated polymer as an electron
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donor and a nanocrystalline metal oxide as the electron acceptor [17–19]. Therefore, they
have unique properties of inorganic semiconductors with the film-forming properties of
the conjugated polymers [20–25]. Inorganic metal oxide semiconductors have their own
relatively high electron mobility, high electron affinity, good thermal stability, facile exciton
dissociation, and mechanical stability [26–29]. The nanoscale metal-oxide nanoparticle
network provides a stable and transparent backbone for free carrier transport. Further,
it can be synthesized as size-tunable nanoparticles with high absorption coefficients [30].
Likewise, organic materials are inexpensive and easily processable. Their properties can
be tailored by chemical synthesis and molecular design. Conjugated polymers offer po-
tential advantages, such as high hole mobility, low cost, facile synthesis via wet chemical
processing, control of heterojunction morphology, and the potential for higher physical and
chemical stabilities [30]. Moreover, the bandgap can be tuned by varying the size of the
nanoparticles, which helps to tailor the absorption range [11]. Hence, suitable strategies
are required to increase this attention by overcoming the limitations, such as the range of
absorbance of organic materials, low efficiency, and poor stability [31].

In hybrid metal oxide polymer solar cells, the electron transfer from π-conjugated
polymers (donor) into the nanoporous metal oxide (acceptor) produces a large proportion
of charge carrier pairs across the donor/acceptor interface. Moreover, the conjugated poly-
mers can be easily processed onto the surfaces of metal oxide nanoparticles, which facilitate
efficient electron-hole pair creation through the enhanced interfacial area. However, the
Coulombic attraction of bound charge carrier pairs limits the overall performance through
prompted recombination at the interface [13,32]. The engineering of the metal-oxide poly-
mer interface takes more attraction to improve the power conversion efficiency of hybrid
solar cells [33].

To date, hybrid solar cells have been investigated with four major categories of inor-
ganic materials, such as silicon, cadmium compounds, metal oxide nanoparticles, and low
bandgap nanomaterials. Si, CdS, CdTe, CdSe, PbS, TiO2, ZnO, and ZnS are typical examples
for inorganic semiconductors that exhibit unique electronic and optical features [34,35].
Several combinations in blending of organic and inorganic materials have been utilized,
and the nanostructures of the semiconductor materials in the form of nanotubes or nanopar-
ticles have shown to play a major role in enhancing the performance of hybrid solar cells
by improving charge separation [30]. Further, selecting favorable acceptor materials with
some important physical properties, such as solubility in a common solvent with the donor
material, availability and cost of the material, capability to reach a balance between elec-
tron and hole mobilities, and the success of the nano-morphology of the donor/acceptor
phases [34], also play a central role in the performance of the hybrid solar cells.

Photosensitizer/interface modifiers which are used in the donor-acceptor interface
have been shown to improve the open-circuit voltage (VOC) and fill factor (FF) by suppress-
ing surface recombination [36]. However, due to the high degradation rate of p-type organic
material, it is difficult to find an ideal dye as a photosensitizer/interface modifier with
suitable bandgap with less degradation [37]. The performance of polymer based solar cells
mainly depends on the key factors of polymer infiltration, morphology, charge separation,
charge recombination, and charge transport [14,17,38].The above factors can be improved
with suitable strategies, such as modification and increasing the surface area of the electron
collector structure or improving interfacial conductivity and light absorption through ap-
propriate interface engineering methods, which improves the overall performance of the
hybrid solar cell by increasing the light absorption [3,39–41].

The photoelectrode of the hybrid solar cells consists of a nanoporous wide bandgap
semiconductor interconnected layer that is sensitized for the visible spectrum by a dye.
The nanoporous semiconductor layer acts as a support layer for the dye molecules and a
region for electron transport. There are several requirements for the selection of an efficient
photoelectrode material. It should have sufficiently high surface area for dye adsorption, to
facilitate the efficient excitation of electrons. The conduction band of the photoelectrode
material should lie slightly below the excited state level of the sensitizer. The material
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should have high charge carrier mobility, should be easy to synthesis, and should be low
cost and environmentally friendly. Moreover, they should have good electronic, photo-
conducting, and luminescent properties. Titanium dioxide (TiO2) satisfies all the above
requirements as an efficient photoelectrode compared to other semiconductors, such as
ZnO, CdS, CdSe, CdTe, PbS, PbSe, Sb2S3 Cu2ZnSnSe4, Ag2S, AgInS2, etc., which were used
in these hybrid solar cells [4,42–45]. TiO2 is a chemically stable, non-toxic, low cost material
that provides controllable morphology and is available in large quantities [46–51]. It mainly
exists in three different forms as rutile, anatase, and brookite [52,53].

In past decades, various polymer materials have been used in hybrid metal oxide
polymer solar cells. Subsequently, they belong to two major types of polymers and their
derivatives of Polythiophene (PT) and Poly(p-phenylene vinylene) (PPV). These polymers
are promising for light-harvesting with a wider spectral band and it absorbs the solar
radiation up to 650 nm. The polymer donor should have a small bandgap, enhanced
packing structure, and high hole mobility in order to obtain an enhanced PCE of the device.
The proximity of the LUMO energy of the polymer donor and the CB energy of metal
oxide acceptor encourages electron transfer. Among other polymer donors reported in
the literature, the homopolymer Poly(3-hexylthiophene) (P3HT) has been gaining much
attraction due to its regular end-to-end packing arrangement of the side chain, which
allows efficient π-π stacking of the conjugated backbones [54–56]. The high molecular
weight with ultra-high purity and good chemical stability, higher hole mobility, and low
optical band gap (1.8 eV) of P3HT are optimized for usages in the organic photovoltaic
research and OPV devices [56–60]. P3HT has been extensively used as a semiconducting
layer in organic thin-film, field-effect transistors (FETs), and solar cells.

Hybrid metal oxide/polymer solar cells provide the potential to study the science
and to take the advantage of both TiO2 and P3HT as combined nanocomposites. This
leads to combined spectral absorption of both TiO2 and P3HT in order to enhance the light-
harvesting and carrier generation [23]. Subsequently, the dissociation of excited electrons
takes place at the TiO2/P3HT interface. As discussed earlier, the charge recombination
needs to be reduced with increased electron dissociation and charge separation. In order
to facilitate proper electron dissociation and charge separation, interface engineering has
been carried out between TiO2 and P3HT nanocomposite, and several proven strategies
were reported in interface modified Hybrid TiO2/P3HT solar cells. Namely, a range of
novel organic and inorganic materials, such as self-assembled monolayers, carbonaceous
materials, inorganic insulating layers, and small molecule sensitizers, was reported in
order to improve the TiO2/P3HT interface [13]. However, it has to be emphasized that
there are still many ways to enhance the performances of hybrid TiO2/P3HT photovoltaic
devices. A well-oriented hybrid TiO2/P3HT nanocomposite design with suitable interface
modification will be one of the promising ways to produce enhanced hybrid TiO2/P3HT
photovoltaic devices.

This review focuses on the recent progress witnessed in the field of hybrid Titanium
dioxide (TiO2)/Poly(3-hexylthiophene) (P3HT) heterojunction solar cells mainly from the
point of interface engineering. Therefore, for the benefit of completeness, we briefly describe
the working mechanism of the proposed device structure with interface modifiers in Titania
based hybrid polymer/nanocrystalline solar cells. By comparing various strategies and
different types of interface modifiers with proposed nanostructures, we summarize the
key factors influencing the photovoltaic power conversion efficiency and other relative
photovoltaic parameters of hybrid TiO2/P3HT solar cells. Further, we briefly discuss
different organic and inorganic interface modifiers and their role. Finally, we outline the
challenges and perspectives for future improvements related to the realization of highly
efficient hybrid solar cells.

The graphical representation of the working principle of a metal oxide/polymer
hybrid solar cell under short circuit conditions [39,61] is shown in Figure 1, and it has six
major steps. The step numbers represent as (1) light absorption (ηa) and exciton creation
(ηex) (a photon with an energy hν ≥ Eg of polymer donor will absorbed), (2) diffusion of
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the exciton to the interface between the metal oxide and polymer (ηdi f f ), (3) electron-hole
pair dissociation into free charge carriers (ηed), (4) charge transport (ηtr), (5) recombination
of charge, and (6) charge collection (ηcc).
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Upon the solar illumination, the photon energy will be absorbed by the active layer
of the solar cells and it generates electron-hole pairs as excitons [62]. Thereafter, the holes
and excited electrons need to be transported towards the anode and cathode electrodes
respectively through their corresponding percolation pathways in order to have current
flow through the fabricated solar cells. As illustrated, the donor material creates the exciton
by absorbing the photon energy from the sunlight and allows the electron to be excited to
the lowest unoccupied molecular orbit (LUMO) by leaving a hole from the highest occupied
molecular orbit (HOMO). Next, the excited electron is dissociated from the LUMO level
and transported to the conduction band (CB) of the acceptor material. The difference in the
energy levels of CB and HOMO should be well matched to avoid recombination. This will
lead to good charge collection through the anode and cathode [28]. Further, the percentage
of the number of charge carriers collected at the electrode with the number of incident
photons under short-circuit condition determines the external quantum efficiency (EQE)
of the solar cells. The involvement of each of the six steps of the above mechanism highly
influences the EQE of fabricated hybrid solar cells.

Figure 2 illustrates the proposed model of the device structure for nanoparticle based
TiO2/P3HT hybrid solar cells and their two major varieties of interface modifications.
The transparent conducting electrode is crucial for a solar cell in order to transmit the
incident light through itself to photon absorbing layers. The overall nanocomposite of
the TiO2/P3HT hybrid solar cell is very thin, about one micrometer. Therefore, the P3HT
can easily penetrate through TiO2 and overpenetration of P3HT may lead to contact with
the transparent conductive electrode, and thus the junction of fabricated solar cells will
function as a line but not as the solar cell. On this occasion, the compact semiconducting
layer can act as a barrier in order to prevent the contact between P3HT and transparent
conductive electrodes.
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Figure 2. A proposed model of a device structure for nanoparticle based TiO2/P3HT hybrid solar
cells and their interface modification. Depicted (a). TiO2 nanoparticle based mesoporous structure
and P3HT nanocomposite without any interface modification, (b). TiO2 nanoparticle based meso-
porous and P3HT nanocomposite structure with insulating layers, and (c). TiO2 nanoparticle based
mesoporous and P3HT nanocomposite structure with small molecule interface modifiers.

Figure 2a represents the TiO2 nanoparticle based mesoporous structure and P3HT
nanocomposite without any interface modification. In past decades, there have been
several inorganic and organic interface modifiers studied for TiO2/P3HT hybrid solar cells.
However, all these interface modifiers can be specified in to two major groups, namely
insulating layers and absorbing materials. Figure 2b,c represent the device structures for
TiO2 nanoparticle based mesoporous and P3HT nanocomposite with insulating layers and
small molecule based absorbing materials, respectively.

In this review, we have summarized the recent progress made and tactics used in
interface modified hybrid TiO2/P3HT solar cells with a range of novel organic and inorganic
materials, such as self-assembled monolayers, carbonaceous materials, inorganic insulating
layers, and small molecule sensitizers. Further, we have summarized our review through
Tables below based on the type of interface modifier and each table is divided into four
columns in order to represent the device structure to indicate where the interface modifier is
used, the role of interface modification or function of interface modifier on the photovoltaic
performance, resultant energy conversion efficiency, and source of reference. The essence of
this analysis will be of interest for researchers in order to understand the nanostructure of
hybrid Tatiana based Poly(3-hexylthiophene) heterojunction solar cells. Furthermore, the
analyzed parameters and findings will also be useful for direct implementations in hybrid
perovskite solar cells and DSSCs.

2. Photovoltaic Performances

The cost-efficient hybrid polymer/nanocrystalline solar cells are promising models to
study the effects of interfacial properties and film morphology on the performance of nanos-
tructured solar cells [63]. They provide a valuable understanding of the charge-transfer
processes at the donor–acceptor interface. Moreover, expertise gained with hybrid systems
has proven to be valuable in improving the performance of all organic based solar cells
as well as perovskite solar cells. In this Titanium dioxide (TiO2)/Poly(3-hexylthiophene)
(P3HT) hybrid structure, the controllable morphological nature of nanoscale Titanium diox-
ide provides a stable and transparent network for free carrier transport. The thiophene rich
P3HT is one of the promising polymer materials with higher hole-mobility to build hybrid
nanostructured solar cells with TiO2. Although this system provides several advantages,
the power conversion efficiency (PCE) of this hybrid structure is highly influenced by
interfacial recombination. However, the interfacial recombination could be reduced by
employing interface modifiers and hence enhance the overall PCE of the solar cells. In the
literature, four major categories of interface modifiers, namely self-assembled monolayers
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(SAMs), inorganic insulating/semiconducting layers, carbonaceous materials, and dye
molecules, have been studied in hybrid TiO2/P3HT solar cells.

2.1. Self-Assembled Monolayers (SAMs) as Interface Modifiers

Self-assembled monolayers (SAMs) are ordered arrays of organic molecules formed
by the spontaneous absorption onto the TiO2 surface. The molecules or ligands that form
SAMs are chemically functionalized in order to have a higher affinity to the surface. Various
self-assembled monolayers (SAMs) reported in the literature are summarized in Table 1.
Here, the different device structures studied and the effect of interface modifiers on the PV
performance are discussed.

Table 1. Self-assembled monolayers (SAMs) as interfacial modifiers in hybrid Titanium
dioxide/Poly(3-hexylthiophene) heterojunction solar cells.

Device Structure The Function of Interface Modifier on Photovoltaic Performance η% Ref.

TiO2/NBA/P3HT/PEDOT:PSS
• SAMs shift the conduction band position of the porous TiO2 relative

to the HOMO level of P3HT, and thus influences interfacial charge
separation.

• 4-nitrobenzoic acid (NBA) treatment increases the driving force for
electron transfer from polymer to TiO2

• SAMs act as a barrier or insulating layer for back electron transfer
from the TiO2 to P3HT.

1.05

[14]

TiO2/MBA/P3HT/PEDOT:PSS 1.24

TiCl4 treatment/TiO2
nanorod/ACA/P3HT

• Reduced back electron recombination
• Anthracene-9-carboxylic acid (ACA) acts as a linker which provides

better compatibility between TiO2 and P3HT, and thus, enhances the
dissociation efficiency.

0.28 [64]

TiO2/4-MP/P3HT
• 4-mercaptopyridine (4-MP) induces the controlled orientation of

P3HT and optimizes the charge separating interface between P3HT
and a squaraine dye-decorated TiO2.

• 4-MP+ 4-tert butylpyridine (tBP) enhances the Voc by inducing a
conduction band edge shift of the TiO2.

• Thermal annealing of the polymer increases the efficiency by 18.95%

Not
reported

[65]

TiO2/4-MP+tBP/SQ2/P3HT 1.13 [66]

TiO2-quasi-1D/P3HT
• Photoelectrode comprises an array of tree-like hyperbranched TiO2

quasi-1D nanostructures which were self-assembled from the gas
phase.

• Increased interfacial area of quasi-1D array enhances optical density
through increased light scattering, and provides better crystallization
of P3HT inside the quasi-1D nanostructure.

1.00

[38]

TiO2/P3HT 0.34

TiO2/TAA/P3HT
• Improves the wettability of the TiO2 surface and P3HT
• The higher hydrophobic nature of 2-thiopheneacetic acid (TAA)

influences the exciton splitting and charge separation
Not

reported [67]

TiO2/benzoic acid or
4-nitrobenzoic acid/P3HT

• The dipole changes the energy level alignment of the polymer and the
TiO2.

• The dipole moment was calculated using DFT as 2.1 D and 3.8 D for
benzoic acid and 4-nitrobenzoic acid, respectively.

Not
reported [68]

The photovoltaic performance summarized in Table 1 evidenced that the interface
modification in nanostructured solar cells with SAMs improves the overall performance
of the solar cells [69–71] due to the increased tunneling probability which is attributed to
reduced effective barrier, and also due to the induced dipole at the donor–acceptor interface
which realigns the energy level [72]. Figure 3 explains this behavior by comparing 4-Nitro
Benzoic Acid (NBA) and 4-Methoxy Benzoic Acid (MBA). The electron accepting NO2
group of NBA leads to a dipole moment pointing towards the TiO2 surface. Thus, the
work function of TiO2 was raised. The electron donor, methoxy group of MBA leads a
dipole moment pointing away from the TiO2 surface, thus reducing the work function of
TiO2 [14]. In such a way, SAMs are involved in the shifting of the TiO2 conduction band
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position relative to the highest occupied molecular orbital (HOMO) level of P3HT. This
behavior highly influences the interfacial charge separation; thus, the current density (JSC)
was increased. Furthermore, the proper additives of SAMs and the polymer annealing
temperature are the crucial factors to enhance the wettability of TiO2 and the VOC of
fabricated solar cells.
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Figure 3. Energy band diagrams for energy level shifting of SAMs at the TiO2/P3HT interface of
ITO/TiO2/SAMs/P3HT/PEDOT:PSS/Au device. NBA and MBA are 4-Nitro Benzoic Acid and
4-Methoxy Benzoic Acid, respectively [14]. Figures (a,b) are energy band diagrams for energy level
shifting of NBA and MBA treated devices, respectively.

As depicted in Figure 4, the NBA treated TiO2/P3HT solar cell showed almost a
factor of two increment in the JSC and slightly improved VOC whereas the MBA treated
cell exhibited significant improvement in VOC. The insertion of SAMs at the TiO2/P3HT
interface creates a barrier for back electron transfer (recombination), and, thus, it facilitates
a driving force for electron transfer from polymer to TiO2. This driving force is evidenced
with an increase of the resulting open circuit voltage (VOC) of fabricated devices. In
addition to the energy level alignment at the interface, the molecular orbital of the SAM
molecule forms an electronic state at the interface to mediate forward charge transfer or
prompt interfacial charge recombination. Further, SAMs can be used to improve adhesion,
wettability, compatibility, and charge transfer properties at the interface to reduce interfacial
charge recombination [73].
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2.2. Inorganic Insulating/Semiconducting Layers as Interface Modifiers

Interface modification has also been carried out in hybrid Titanium dioxide/Poly(3-
hexylthiophene) heterojunction solar cells using inorganic insulating/semiconducting
layers. Table 2 summarizes the work reported in the literature with the inorganic insulat-
ing/semiconducting layers and their influence on photovoltaic performance.

Table 2. Inorganic insulating/semiconducting layers as interfacial modifiers in hybrid Titanium
dioxide/Poly(3-hexylthiophene) heterojunction solar cells.

Device Structure The Function of Interface Modifier on Photovoltaic Performance η% Ref.

TiO2/Al2O3/N719/P3HT/PEDOT:PSS
The Al2O3 coating served as a physical barrier to charge recombination of dye
cations. Both Jsc and Voc were enhanced and hence the overall efficiency increased
by a factor of two.

1.40 [73]

TiO2-NR(annealed)/Sb2S3/ P3HT The improved electronic conductivity and enhanced crystallinity of TiO2 NRs
were archived through annealing (500 ◦C for 2 h) of TiO2 NRs prior to the
deposition of Sb2S3.

1.84
[74]

TiO2-NR/Sb2S3/P3HT 1.03

TiO2/CdS/P3HT/PEDOT:PSS CdS interlayer extended the spectral response, smooth charge transfer, reduced
the interfacial charge recombination, and enhanced the built-in voltage 2.40 [75]

TiO2/SnS/P3HT SnS enhanced the charge collection by reducing the loss of electrons, thus,
Voc increased. 2.81 [76]

TiO2 -NR/CdS/P3HT Enhanced optical absorption in the visible region resulted an increase in PCE 1.38 [77]

TiO2 nanowires/Pyridine/P3HT Pyridine suppresses back electron transfer recombination at TiO2/P3HT interface.
CdS contributes to suppress the recombination of the charge carriers.

0.70
[24]

TiO2 nanowires/CdS/P3HT 0.45

TiO2/CdS-QD/P3HT CdS-QDs act as a co-sensitizers 0.87 [78]

TiO2/CdS/P3HT
CdS modification enhance the PCE due to increased Jsc and Voc.
CdS layer enhances exciton dissociation and prohibits carrier recombination at the
heterojunction, and act as a light absorber at the wavelength around 400 nm.

0.60 [31]

The charge transportation at the TiO2/P3HT interface is much faster than carrier
recombination. In this regard, the deposition of a large band gap owned inorganic insulating
thin layer on top of the TiO2 surface is a promising modification in order to control carrier
recombination by acting as a kinetic barrier at the TiO2/P3HT interface [73,74]. The reduced
recombination is seen to directly influence the enhancement of JSC and VOC of the solar cells.

Loheeswaran et al. reported the photovoltage transients of the TiO2/P3HT devices in
the presence of Al2O3 as an interlayer [73]. The lifetimes of the decays were reported as
0.07 ms and 0.5 ms for the control TiO2/P3HT and interface modified TiO2/Al2O3/P3HT
devices, respectively. This result evidenced that the interfacial recombination at the
TiO2/P3HT interface is controlled by the interlayering of Al2O3. Thus, the overall ef-
ficiency increased.

Moreover, the improved electronic conductivity and enhanced crystallinity of TiO2
morphology and enhanced spectral response of the inorganic insulator material provide
further support to enhance the PCE through proper charge collection of the fabricated solar
cell. However, most of these inorganic insulators do not participate in carrier generation.
This is a primary downside of these materials when they are employed with absorbing
polymers like P3HT.

The insertion of a semiconducting CdS layer at the TiO2/P3HT interface broadens the
spectral response as in Figure 5a and controls recombination kinetics as in Figure 5b [79].
Therefore, the overall efficiency was improved by a factor of three. In this study, semi-
conducting CdS play a dual role, as interface modifier and co-sensitizer in the hybrid
TiO2/polymer solar cells.
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Figure 5. (a) External quantum efficiency and absorbance spectra of CdS incorporated TiO2/P3HT
solar cells and nanostructured films, respectively. (b) Double logarithmic normalized photovoltaic
transient decay of TiO2/P3HT solar cells with and without CdS [79].

2.3. Carbonaceous Materials as Interface Modifiers

There are several carbonaceous materials employed as an interface modifier in hybrid
solar cells. Carbon nanotube (CNT) is one of the promising carbonaceous materials that
can be used as an interface modifier for hybrid polymer solar cells due to its interesting
optoelectronic properties [80]. The recent progress in insertion of carbonaceous materials
at the TiO2/P3HT interface were analyzed and summarized in Table 3. Carbonaceous
materials like multi wall carbon nanotubes (MWNTs) have enhanced number of percolation
routes for charge transportation. MWNT incorporating TiO2 suppress recombination due
to the fast charge transfer through its percolated networks while reducing the electron
losses [81]. The proper charge transport at the interface results in enhancement of hole-
mobility of the overall nanocomposite and in increase in current density. The surface
roughness of MWNT coated TiO2 electrodes facilitates the deposition of well-aligned P3HT
chains around MWNT due to π-π interaction. However, the increased MWNT wt% could
lead to a reduction in the fill factor and VOC, which is probably due to the shunting by the
excess amount of MWNTs.

Table 3. Carbonaceous materials as an interfacial modifier in hybrid Titanium dioxide/Poly(3-
hexylthiophene) heterojunction solar cells.

Device Structure The Function of Interface Modifier on Photovoltaic Performance η% Ref.

TiO2-C60/P3HT Incorporation of C60 reduced the recombination due to the
occurrence of electron transfer from the defect state to the C60
percolation network.

0.71

[82]TiO2-Z907/P3HT 0.65

TiO2-C60-Z907/P3HT 1.05

TiO2-MWCNT/Z907/P3HT

• Increase in hole-mobility resulted when 0.02 wt% MWCNT
blended with porous TiO2.

• Enhanced hole-mobility of ∼ 4.510−5 cm2V−1s−1 resulted
due to the well aligned path ways constructed for charge
carriers through incorporation of MWCT with TiO2.

Not
reported [83]

TiO2-MWCNT/Z907/P3HT

• Aligned P3HT chains around MWNT due to p-p interaction.
• Enhanced efficiency resulted when 0.02 wt% MWCNT

blended with porous TiO2.
• The improved performance due to the enhanced number of

percolation routes in MWNT, which suppresses back electron
transfer via reducing the electron losses.

• Further increment in MWNT wt% reduces the fill factor and
Voc, which may be attributed to shunting by the excess
amount of MWNTs.

2.50 [81]
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2.4. Small Molecule Sensitizers as Interface Modifiers

The insertion of small molecule sensitizers at the TiO2/P3HT interface is analyzed
and summarized in Table 4. The most common small molecule sensitizers are organic dyes.
The cis-Bis(isothiocyanato)(2,2′-bipyridyl-4,4′-dicarboxylato)(4,4′-di-nonyl-2′-bipyridyl)
ruthenium(II) (Z907), Di-tetrabutylammoniumcis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-
dicarboxylato)ruthenium(II) (N719), Ru(bpy)2(dcbpy)(ClO4)2[(bpy)2,2′-bipy ridine; dcbpy
= 4,4′-dicarboxy-2,2′-bipyridine] (RuC), cyanoacrylic acid group ((E)-2-cyano-3-(3′,3′′,3′′′-
trihexyl-[2,2′:5′,2′′:5′′,2′′′-quaterthiophene]-5-yl) acrylicacid) (4T), 2-Cyano-3-[4-[4-(2,2-
diphenylethenyl)phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl]-2-propenoic acid
(D131), and 5-[[4-[4-(2,2-Diphenylethenyl)phenyl]-1,2,3-3a,4,8b-hexahydrocyclopent [b]indol-
7-yl]methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3thiazolid ineacetic acid
(D149) are the notable dyes that played important roles at the TiO2/P3HT interface of HSCs.
Figure 6 depicts the schematic representation for how the small molecule sensitizers can
influence the polymer arrangement in HSCs. They are accomplished as a “bridge” to
enrich the exciton dissociation, prevent charge recombination, and enhance the electron
lifetime. Dye molecules are the small structures that can easily bind with TiO2 structures
and their pore filling nature improves the interfacial area between TiO2 and P3HT [75]. The
pore-filling and proper contact between TiO2 and dye molecules can be achieved by the
TiO2 surface modifications with TiCl4, Li-TFSI, H-TFSI, and TBP molecules. Such suitable
surface treatments surge the fraction of pore filling, Fermi level shifting of TiO2, and the
charge conductivity of fabricated HSCs. Further, TiO2 induces polymer disorder mainly
at a few nanometers away from the TiO2/P3HT interface. In this manner, the surface
modification takes place with a huge influence on the molecular arrangement in HSCs.

Table 4. Small molecule sensitizers as interfacial modifiers in hybrid Titanium dioxide/Poly(3-
hexylthiophene) heterojunction solar cells.

Device Structure The Function of Interface Modifier on Photovoltaic Performance η% Ref.

TiO2/BT5 oligomer/P3HT

• Interlayers act as a physical spacer between the electron on the inorganic acceptor and
the hole on the organic donor.

• The electron affinity offset between donor and acceptor should be maximized to
enhance the exciton dissociation efficiency.

0.21 [12]

TiO2/TiCl4/PCBA/P3HT • LiTFSI molecules surges the pore-filling fraction and the charge conductivity for
D131-based cells

0.37
[49]

TiO2/TiCl4/D131/LiTFSI-tBP-P3HT 1.53

TiO2 nanorod/D149/P3HT/PEDOT:PSS • Both carrier generation and recombination at the TiO2-NR/D149 and P3HT interface
are reduced when TBP molecules are adsorbed on TiO2-NR by replacing a few D149
molecules.

• Fermi level of D149 dye modified TiO2-NR is lowered after TBP treatment.

1.58
[84]

TiO2 nanorod/D149/TBP/P3HT/PEDOT:PSS 1.83

TiO2-NR/Z907/P3HT/PEDOT:PSS • Z907 and D149 dye molecules provide a proper band alignment and better
compatibility between TiO2-NR and P3HT, and thus, enhances both charge separation
and electron lifetime.

• Three-dimensional TiO2-ND arrays facilitate an increase in the interface area, and
thus, a boosted charge separation is observed with D149.

0.94

[85]TiO2-NR/D149/P3HT/PEDOT:PSS 1.98

TiO2-ND/D149/P3HT/PEDOT:PSS 3.12

TiO2/TBP/WL-4/ P3HT

• Thiophene end groups of WL-4 improves the mutual compatibility between TiO2 and
P3HT.

• Presence of strong electron withdrawing –CN moiety neighboring to the –COOH
anchoring group facilitates a molecular dipole directing away from the TiO2 surface,
and enhances the electron affinity of the molecules, simultaneously enhances the Jsc
and Voc

2.87 [86]

TiO2/carboxylated oligothiophene/P3HT Addition of carboxylated oligothiophenes enhanced surface coverage and improved
interfacial interactions. 0.11 [87]

TiO2/Z907/P3HT/PEDOT:PSS

• The hydrophilic metal-oxide surface modified with a monolayer of Z907 molecules
facilitates the hydrophobic surface to the polymer and results in improved
compatibility with the polymer. It leads to increased polymer infiltration and
therefore enhancement in JSC.

• Pre-soaking of the polymer assists proper infiltration into the nanoporous layer.

0.53 [88]
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Table 4. Cont.

Device Structure The Function of Interface Modifier on Photovoltaic Performance η% Ref.

TiO2 nanofibers/N719+PPA/P3HT • Improved TiO2/P3HT interface resulted with a reduction in the trap state density and
suppressed interfacial recombination.

• PPA is employed with N719 as a co-absorbent

1.09
[89]

TiO2 nanofibers/N719/P3HT 0.90

TiO2/N719/P3HT
• Interface modification highly influenced the PCE compared to the crystallinity effect

of the TiO2 nanostructures. 0.35 [22]

TiO2/TiCl4 treatment/4T/H-TFSI doped P3HT

• H-TFSI additive quenches photocurrent generation from excitation of P3HT, but
facilitates very effective charge extraction upon excitation of the oligothiophene.

• The effect of the conjugation length of dye has been studied. The exciton binding
energy was reduced by increasing the thiophene chain length. The short chain length
owning 1T builds a barrier for charge collection from the P3HT, whereas lengthy
chain length owning 5T failed to well inject into TiO2.

• Both oligothiophenes anchored on TiO2 and P3HT are involved in photocurrent
generation.

1.54

[90]

TiO2/TiCl4 treatment/5T/H-TFSI doped P3HT 2.32

TiO2/TDCV-TPA/P3HT
• Nano porosity of spin-coated TiO2 facilitates an efficient exciton harvesting.
• TDCV-TPA has a facile infiltration into mesoporous TiO2 due to its higher absorption

coefficients.
0.60 [91]

TiO2/TCA/P3HT
• Improved exciton splitting and charge separation at the TiO2/P3HT interface.
• The higher hydrophobic nature of TCA is more compatible with P3HT. 0.03 [67]

TiO2-NR/P3HT-b-P2VP/P3HT
• Copolymer P3HT-b-P2VP effectively modulates the interfacial interactions between

the P3HT homopolymer and TiO2 nanorod. 1.20 [92]

TiO2/LiI+P3HT • LiI induces the photovoltaic response in the ultraviolet region 1.28 [93]

TiO2/triphenylamine dye/P3HT
• Compatibility enhancement was achieved between TiO2 and P3HT.
• Dye performed as a “bridge” to facilitate the exciton dissociation, inhibit the charge

recombination, and enhance the electron lifetime.
2.01 [10]

TiO2-NRA/TiO2-QDs • Balanced dipole effects tailor the interfacial characteristics through the integration of
TiO2-QDs and N719 at the heterojunction interface.

• The tunable device performance resulted with the balanced interfacial dipoles.

0.61

[48]TiO2-NRA/TiO2-QDs/N719(4 h) 0.83

TiO2-NRA/TiO2-QDs/N719(8 h) 0.91

TiO2/P3HT • The interface modification of dyes improves the hole mobility of the P3HT and
involves reduction of recombination at the TiO2/P3HT interface.

• The contribution of thiophene derivative 4T dye in the carrier generation is much
higher compared to the standard Ruthenium based dyes.

• As P3HT has thiophene units, the combination of thiophene derivative dyes with
P3HT facilitate a better compatibility than the combination of P3HT with other
ruthenium based dyes.

0.41

[30]
TiO2/N719/P3HT 0.86

TiO2/Z907/P3HT 1.01

TiO2/4T/P3HT 2.04

TiO2/P3HT

• UV–Visible absorption spectra of control TiO2/P3HT film is broadened in the UV
region in the presence of the RuC dye, and thus carrier generation is high for
TiO2/RuC/P3HT nanocomposite.

• Enhanced carrier generation and the extended spectral response evidenced with the
extended EQE spectrum.

• The Photoluminescence quenching and the dark current clampdown of two orders of
magnitude reveals that the incorporation of RuC at the interface involves the
reduction of recombination.

0.73

[94]

TiO2/RuC/P3HT 2.35

TiO2/4T/P3HT
• A seminal work with lithium doped P3HT in dye treated hybrid solar cells.
• Efficiency was significantly increased by doping the P3HT with LiTFSI and tBP.
• High short circuit current density of 13 mA/cm2.
• Low fill factor values were found due to resulting low shunt resistance.
• Light harvesting properties of doped P3HT was discussed.

1.04

[95]

TiO2/4T/Li doped P3HT 3.95

Further, the porosity of spin-coated TiO2 prompted an efficient exciton harvesting
from the donors/dyes. The higher hydrophobic nature of the interface modifier is much
compatible to work with P3HT which leads to result in reduced recombination, improved
exciton splitting, and charge separation at the TiO2/P3HT interface. The hydrophilic metal-
oxide surface modified with a monolayer of dye molecules facilitates a hydrophobic surface
on the polymer. Thus, the compatibility was enhanced. This leads to increased polymer
infiltration and therefore enhancement of JSC. Further, the interfacial characteristics can
be tailored by balanced dipole effects through the integration of different morphologies,
such as TiO2-NPs, TiO2-QDs, TiO2-NRs, TiO2-NWs, and TiO2-NCs with suitable dyes at
the heterojunction interface [48,92].
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interface is modified with small molecule sensitizers and (ii) unmodified interface.

Apart from these morphological structures of TiO2 metal oxides, the molar extinction
coefficient, spectral response in the UV region, and functional groups of dye material
take the dominant role in the overall carrier generation of HSCs. Higher molar extinction
coefficients with wide spectra owned dyes are the most promising sensitizers to work
with TiO2 and P3HT. In this regard, ruthenium based and thiophene units-based dyes
are highly studied in HSCs. Their –COOH anchoring group and tail-like structure of
thiophene units can easily penetrate into the mesoporous structures, thus the surface
coverage and interfacial interactions will be prompted [30]. The presence of strong electron
withdrawing moieties neighboring to the –COOH anchoring group facilitates a molecular
dipole directing away from the TiO2 surface and enhances the electron affinity of the
molecules, and simultaneously JSC and VOC [94,96]. Highly enhanced surface coverage
and improved interfacial interactions have been reported with the addition of thiophene
base molecules rather than –COOH anchoring groups. Moreover, a proper conjugation
length of the dye should be used to have enhanced charge generation and collection. Excess
conjugation length may discard the interface. The exciton binding energy is reduced by
increasing the thiophene chain length. In such cases, the lower conjugation length of dye
creates a barrier for charge collection from the P3HT, whereas the highest conjugation
length of dyes cannot effectively inject into the TiO2 nanostructure. In addition to TiO2
nanostructures and dye molecules, the deposition of P3HT is highly concerned. Pre-soaking
of dyed TiO2 electrodes in P3HT solution prior to the P3HT deposition assists proper
infiltration into the nanoporous layer. The combined use of copolymers and additives with
P3HT may effectively modulate further enhancement of interfacial interactions between the
TiO2 and P3HT nanocomposite. On this aspect, recently, both hexyl-substituted thiophene
ring based 4T dye and P3HT were employed in titania based HSC along with lithium
component as dopant for P3HT, and a high JSC of 13 mA/cm2 with highest PCE of 3.95%
in dye modified HSCs was reported [95]. This enhanced performance is probably due to
the increased charge transport and betterment of light harvesting properties of Lithium
doped P3HT along with 4T interface modifier at TiO2/doped P3HT interface (Figure 7).
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Figure 7. (a) Carrier generation and light harvesting properties of ITO/TiO2/4T/P3HT or doped
P3HT/Au solar cells. (b) Photoluminescence quenching of TiO2/4T/P3HT and TiO2/4T/doped
P3HT films attributed due to enriched exciton dissociation via reduced carrier recombination at the
TiO2/polymer interface.

3. Summary and Perspectives

In this review, we have focused on the recent progress made and tactics adopted in
enhancing the performance of hybrid TiO2/P3HT solar cells through interface modifications
by employing a range of novel organic and inorganic materials, such as self-assembled mono-
layers, carbonaceous materials, inorganic insulating layers, and small molecule sensitizers.

It is observed that TiO2 induces polymer disorder mainly at the first few nanometers
away from the TiO2/P3HT interface. Surface modification seems to have a huge influence
on the molecular arrangement in HSCs and their performance. A combined study of charge
separation, the recombination mechanism, and the polymer disorder will be essential to
enhance the PCE of hybrid solar cells. Interlayers can act as a physical spacer between
the electron on the inorganic acceptor and the hole on the organic donor. Further, they
maximize the electron affinity offset between acceptor and donor in order to promote the
exciton dissociation. In summary, the PCE of the HSCs are shown to be highly influenced
by the interface modification compared to the crystallinity effect of the TiO2 nanostructures.
The induced hole transportation and absorption properties of polymer through suitable
dopants serve as a backbone for the further enhancement of PCE in interface modified HSC.
The combined use of copolymers and additives with P3HT can effectively modulate further
enhancement of interfacial interactions between the TiO2 and P3HT nanocomposite. The
usage of electron rich hexyl-substituted thiophene ring based dyes with P3HT can support
better compatibility, high charge transport, and improved light harvesting properties of
titania based HSCs. The proper interface modifications with a well-optimized fabrication
technique enhance the performance of HSCs and will contribute to studying the principles
of the science behind organic photovoltaics.
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Abbreviations

HSC hybrid solar cell
4-MP 4-mercaptopyridine
tBP 4-tert-butylpyridine
SQ2 squaraine dye
D131 yellow dye
LiI lithium iodide
TCA 2-thiophenecarboxylic acid
P3HT b-P2VP-poly(3-hexylthiophene)-b-poly(2-vinyl pyridine)
PPA 3-phenylpropionic acid
ACA anthracene-9-carboxylic acid
QDs quantum dots
AMBIm 2-amino-1-methylbenzimidazole
ND nanodendrite arrays
MWCNT Multi Wall Carbon Nanotube
WL-4 cyanoacrylic acid-containing conjugated molecules
TAA 2-thiopheneacetic acid
PCBA [6,6]-Phenyl C61 butyric acid
NR nanorod
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