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Abstract: There is a growing interest in finding a suitable electrolyte material for the construction of
rechargeable Li-ion batteries. Li2NiGe3O8 is a material of interest with modest Li-ionic conductivity.
The atomistic simulation technique was applied to understand the defect processes and Li-ion
diffusion pathways, together with the activation energies and promising dopants on the Li, Ni, and Ge
sites. The Li-Ni anti-site defect cluster was found to be the dominant defect in this material, showing
the presence of cation mixing, which can influence the properties of this material. Li-ion diffusion
pathways were constructed, and it was found that the activation energy for a three-dimensional
Li-ion migration pathway is 0.57 eV, which is in good agreement with the values reported in the
experiment. The low activation energy indicated that Li-ion conductivity in Li2NiGe3O8 is fast. The
isovalent doping of Na, Fe and Si on the Li, Ni and Ge sites is energetically favorable. Both Al and Ga
are candidate dopants for the formation of Li-interstitials and oxygen vacancies on the Ge site. While
Li-interstitials can improve the capacity of batteries, oxygen vacancies can promote Li-ion diffusion.
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1. Introduction

The generation of renewable energy is one of the important challenges and requires
the development devices such as Li-ion batteries [1–5], Li-ion capacitors [6], novel Na-ion
batteries [7], Na-ion capacitors [8] and K-ion batteries [9]. Lithium-ion batteries (LIBs), being
one of the very successful types of rechargeable battery for portable electronics, are well
known in consumer electronics and have secured a significant role as one of the promising
clean energy devices superseding non-renewable fossil fuels. Its outstanding properties
generally emanate from its electrode and electrolyte materials. Consequently, scientists are
paying attention to the development of new electrode and electrolyte materials with unique
electrochemical performance, and environmentally sound and prolific constituent elements.

Recent research studies have focused on investigating novel Lithium-ion conduct-
ing electrode and electrolyte materials to be used in rechargeable LIBS. Solid electrolytes
are more preferred than liquid electrolytes for portable applications due to the electro-
chemical instability arising from contact between liquid electrolytes and cathodes [10,11].
Furthermore, solid electrolytes offer a wide range of advantages, e.g., simpler and safer
cell design, better shock resistance and durability [12]. To date, research has been done
incessantly to develop and optimize suitable candidate materials with Li-ion conductivities
of at least 10−3 S/cm at ambient temperature [10–12]. Thus, new materials with higher
ionic conductivity may be great beneficial for improving the performance of LIBs.

Although most of the solid electrolyte materials have been studied, their applications
in commercial cells are limited due to their high interfacial resistance with electrode materi-
als [13,14]. Lowering the interfacial resistance may be the key to the development of a solid
electrolyte material.

The spinel structure, with the general formula of AB2O4, exhibits a wide range of
electrical properties, being a cubic close-packed oxide with eight tetrahedral and four
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octahedral sites per formula unit. The arrangement of cations in the spinel structure decides
whether the structure is normal ([A]tet[B2]octO4), inverse ([B]tet[A,B]octO4) or random
([B0.67A0.33]tet[A0.67B1.33]octO4) [15,16]. Li-based spinels have been studied to investigate
their fascinating electrical properties, as they follow a two-step conduction mechanism
with the formation of a three-dimensional 8a-16c-8a pathway [17].

Li2NiGe3O8 is an ordered or ‘complex’ spinel structure that can serve as a potential
candidate material, since it does not exhibit any phase transitions upon heating or any
cation mixing across tetrahedral or octahedral sites [10,11]. Li2NiGe3O8 is a synthetic
material belonging to the space group of P4332, which exhibits modest Li-ion conductivity
of ~10−5 S/cm at 63 ◦C [10]. The conduction of the Li-ion in Li2NiGe3O8 occurs via a
simple 8c-12d-8c hopping mechanism [10] with an activation energy of 0.43 ± 0.03 eV at
300 K [11]. Therefore, this can be considered as an ideal candidate material for studying
its electrical properties further. Though few studies on the diffusion of Li-ions and the
electrochemical studies are available, theoretical reports on the intrinsic defects, diffusion
pathways and solution of dopants are not available in the literature.

Since defect studies on this material have not been explored yet, we used a computa-
tional modelling technique based on the classical pair potentials to investigate defect ener-
getics and diffusion pathways, together with activation energies and promising dopants.
Defect calculations can provide useful information about the defect processes (Schottky,
Frenkel and anti-site) influencing the electrochemical properties of this material. Through
use of the current methodology, long range Li-ion diffusion pathways and their activation
energies can be simulated. Such information is crucial for optimizing this solid electrolyte
material in all solid-state LIBs. The promising isovalent or aliovalent dopants predicted
from this study can be considered for experimental verification.

2. Computational Methods

The bulk and defective structure calculations were based on the Buckingham potentials
as implemented in GULP (General Utility Lattice Program) code [18]. In this method, total
lattice energy or interactions between ions were modelled using long-range Coulombic
interaction and short-range repulsive interactions representing electron–electron repulsion
and van der Waals interactions. Buckingham potentials [19–21] were used to model short-
range interactions (see Table 1). The potentials used for the dopant oxides are provided
in the supplementary information (Table S1). The full structural relaxation of the atom
positions and simulation boxes was performed using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm [22]. The defect process was assumed to take place under constant
pressure. Lattice relaxations around point defects and migrating ions were modelled
using the Mott–Littleton method [23]. This method partitions a crystal lattice into two
spherical regions. Region I contained ions surrounding the defect, which are explicitly
relaxed, and Region II was treated by using quasi-continuum methods. The activation
energy of the migration is the energy difference between the initial configuration and a
saddle point configuration. In all optimized configurations, the forces on the atoms were
less than 0.001 eV. The defects’ enthalpies will be overestimated, as the present model
assumes a full charge ionic model, with the calculation corresponding to the dilute limit. A
schematic representation of the defect models is shown in the supplementary information
(see Supplementary Figure S1).

Table 1. Buckingham potential parameters [19–21] used in classical simulations of Li2NiGe3O8.

Interaction A/eV ρ/Å C/eV•Å6 Y/e K/eV•Å−2

Li+ – O2− 632.1018 0.2906 0 1 99,999.0
Ni2+ – O2− 1760.0 0.2800 0 2 93.7
Ge4+ − O2− 1497.3996 0.325646 16.808599 4 99,999.0
O2− – O2− 22,764.30 0.1490 44.53 −2.96 65.0
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3. Results and Discussion
3.1. Modelling of Bulk Li2NiGe3O8

The crystal structure of Li2NiGe3O8 is cubic with the space group of P4332. The
experimentally observed crystal structure has the lattice parameters a = b = c = 8.180 Å and
α = β = γ = 90◦ [11]. In this complex structure, Li-ions form a tetrahedral coordination (see
Figure 1). Both the Ni2+ and Ge4+ ions are bonded to the nearest neighboring O2− ions,
forming distorted octahedral units. The LiO4 tetrahedral units share their corners with the
neighboring NiO6 and GeO6 octahedral units. Full geometry optimization was performed
to calculate the equilibrium lattice constants. The calculated lattice constants are in good
agreement with those reported in the experiment (see Table 2) indicating the suitability of
the potential parameters used in this study.
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Table 2. Calculated and experimental lattice parameters of a Li2NiGe3O8 spinel.

Parameter Calculated Experiment [11] |∆|(%)

a = b = c (Å) 8.218 8.180 0.46
α = β = γ (◦) 90 90 0

V (Å3) 555.11 547.39 1.41

3.2. Intrinsic Defects

In this section, we discuss the formation of possible intrinsic defects in Li2NiGe3O8.
Isolated point defects (vacancies and interstitials) were first generated, and their formation
energies were calculated. Frenkel, Schottky and anti-site defect formation energies were
then calculated by associating appropriate point defect energies. The electrochemical
and diffusion properties of a material are influenced by these defect processes. Anti-site
defects have been found both experimentally and theoretically in many oxides [24–28]. We
considered anti-site defects in isolated and cluster form. In the cluster form, isolated defects
were considered in the same supercell. In the isolated form, isolated defect energies were
calculated separately and their energies were combined. The defect reaction equations
were constructed using Kröger–Vink notation [29].

Li Frenkel : LiXLi → V′Li + Li•i (1)

Ni Frenkel : NiXNi → V′′Ni + Ni••i (2)

Ge Frenkel : GeX
Ge → V′′′′Ge + Ge••••i (3)

O Frenkel : OX
O → V••O + O′′i (4)
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Schottky : 2LiXLi + NixNi + 3GeX
Ge + 8OX

O → 2V′Li + V′′Ni + 3V′′′′Ge + 8V••O + Li2NiGe3O8 (5)

Li2O Schottky : 2LiXLi + OX
O → 2V′Li + V••O + Li2O (6)

NiO Schottky : NiXNi + OX
O → V′′Ni + V••O + NiO (7)

GeO2 Schottky : GeX
Ge + 2OX

O → V′′′′Ge + 2 V••O + GeO2 (8)

Li/Ni antisite (isolated) : LiXLi + NiXNi → Li′Ni + Ni•Li (9)

Li/Ni antisite (cluster) : LiXLi + NiXNi →
{

Li′Ni : Ni•Li
}X (10)

Ni/Ge antisite (isolated) : NiXNi + GeX
Ge → Ni′′Ge + Ge••Ni (11)

Ni/Ge antisite (cluster) : NiXNi + GeX
Ge →

{
Ni′′Ge : Ge••Ni

}X (12)

We report the defect energies calculated for all defect processes in Figure 2. The lowest
energy defect is the Li-Ni anti-site defect cluster. This shows that Li/Ni cation disorder
will be present although the exact concentration is unknown. The Ni/Ge anti-site defect
cluster exhibits slightly greater energy than that calculated for the isolated Li/Ni anti-site.
This is because of the charge difference (+2) between Ni2+ and Ge4+ is greater than that that
found (+1) between Li+ and Ni2+. The favorability of the anti-site defect cluster is due to
the exoergic binding of isolated defects. The Li-Frenkel defect energy is 1.74 eV. This defect
process will ensure the formation of Li vacancies and enhance the vacancy-assisted Li-ion
migration in this material. The other Frenkel and Schottky energies are highly exothermic
and require a high temperature.
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3.3. Li-ion Diffusion

Materials with fast diffusion of Li-ions and low activation energy can enhance the
performance of Li-ion batteries. The current simulation technique was successfully used on
various oxide materials to elucidate the diffusion pathways and activation energies [30–33].
Here, we constructed long Li-ion diffusion pathways by considering local Li-Li hops and
calculated the activation energies for local hops.

Two promising Li local hops with Li-Li separations of 3.55 Å and 3.58 Å were identi-
fied (see Figure 3a). The activation energies for these hops were calculated to be 0.57 eV
and 0.89 eV, respectively (see Figure 3b,c). We have considered Li hop distances longer
than 4.00 Å. However, their activation energies were prohibitively high, with activation
barriers greater than 3.00 eV. Long-range Li-ion migration pathways were identified
by connecting local hops. Two promising long-range pathways ((A→A→A→A) and
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(A→A→B→A)) were identified. The lowest activation energy (0.57 eV) was noted for
the A→A→A→A long-range pathway. Daniel et al. [11] evaluated the Li-ion diffusion
mechanism in Li2NiGe3O8 and reported that the bulk Li-ion diffusion activation energies
of powdered samples and samples sintered at 950 ◦C are 0.43 ± 0.03 eV and 0.53 ± 0.01 eV,
respectively. The values reported in the experimental study agree with the value calcu-
lated in this study. Both the experiment and theory concluded that Li-ion diffusion in this
material is fast.
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Figure 3. (a) Schematic diagram showing the stages of vacancy-mediated Li-ion migration (b) Li-ion
diffusion pathways and (c,d) energy profile diagrams showing the activation energies of the local
hops A and B, respectively.

3.4. Solution of Dopants

A range of isovalent and aliovalent dopants were substituted on the Li, Ni and Ge
sites. The aliovalent doping required charge-compensating defects in the lattice. In all
doping processes, the lattice energies of oxides were used to construct the defect reactions.
The candidate dopants can be used to modify the mechanical, electronic and chemical
properties of Li2NiGe3O8.

3.4.1. Alkali Dopants

Three alkali metal ions (Na+, K+ and Rb+) were doped on the Li site. The solution
energies were calculated by using the following equation:

M2O+2LiXLi → 2MX
Li + Li2O (13)

A negative solution energy calculated for Na+ means this dopant is thermodynamically
feasible (see Figure 4). This is partly due to the fact that the ionic radius of Na+ ions (1.02 Å)
is reasonably close to that of Li-ions (0.76 Å). The solution energy increases gradually with
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increasing ionic radius. The solution energy is highly endoergic (4.89 eV) for Rb+, and this
dopant is thermodynamically unfavorable. A possible chemical composition that can be
synthesized is Li2-xNaxNiGe3O8 (0.0 < x < 1.0), although the exact concentration can be
determined by experiments.
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3.4.2. Divalent Dopants

A range of divalent cations consisting of transition metal cations and alkali earth
cations were considered on the Ni site. The defect reaction required no charge-compensating
defects, as explained by the following equation.

MO+NiXNi → MX
Ni + NiO (14)

The calculated solution energies show that the most promising dopant is Fe2+, with a
solution energy of −1.19 eV (see Figure 5). Very low solution energies were calculated for
Co2+, Mn2+, Cu2+ and Zn2+. The promising feature of these five dopants is partly due to
their ionic radii closely matching with the ionic radius of Ni2+ (0.69 Å). The solution energy
gradually increases with an increasing ionic radius. The Ba2+ has a very large positive
solution energy of 4.32 eV, and this dopant is highly unfavorable.
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3.4.3. Trivalent Dopants

The substitution of trivalent dopants on the Ge site can create two charge compensating
defects, namely lithium interstitials and oxygen vacancies in the lattice. Additional Li-ions
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in this material would enhance the capacity of Li2NiGe3O8 in the form of Li-interstitials
according to Equation (15):

M2O3 + 2 GeX
Ge + Li2O→ 2 M′Ge + 2 Li•i + 2 GeO2 (15)

The Al3+ was found to be the most favorable dopant for this process (see Figure 6).
This is due to the fact that the ionic radius of Al3+ (0.54 Å) is very close to the ionic radius
of Ge4+ (0.53 Å). The solution energy of Ga3+ is higher than that calculated for Al3+ by
only 0.07 eV. The solution energy increases with an increasing ionic radius. The most
unfavorable dopant for this process is La3+.
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Vacancy-assisted Li-ion migration can be promoted by the oxygen vacancies via the
formation of Li2O. As mentioned above, oxygen vacancies require doping of trivalent
cations on the Ge site, as explained by the following equation.

M2O3 + 2 GeX
Ge + OX

O → 2 M′Ge + V••O + 2 GeO2 (16)

In general, higher solution energies were noted for this process compared with those
calculated for the Li-interstitial charge compensation (see Figure 6), meaning that this
process requires high temperatures. Ga3+ is a suitable dopant for this process, although the
solution energy of Al3+ is lower than that calculated for Ga3+ by only 0.03 eV. Again, La3+

is an unfavorable dopant for this process.

3.4.4. Tetravalent Dopants

The Ge site was replaced by different tetravalent cations (Si4+, Sn4+, Ti4+, Zr4+ and
Ce4+). The doping of tetravalent cations introduces no charge-compensating defects ac-
cording to Equation (17):

MO2 + GeX
Ge → MX

Ge + GeO2 (17)

The most favorable dopant is Si4+ (see Figure 7), as it exhibits a negative solution
energy of−1.13 eV. Ti4+ is the second most favorable dopant. As this dopant has an exoergic
solution energy of −0.39 eV, this dopant is also worth testing experimentally. Positive
solution energies were noted for other dopants. In particular, the solution energy calculated
for Ce4+ is 3.07 eV.
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3.5. The Impact of Favorable Dopants on the Diffusion of Li-ions

Li-ion diffusion pathways were calculated in the presence of the most favorable
dopants. Table 3 reports the activation energies. Doping with Na increased the activation
energies of local Li hops A and B slightly. There was a small reduction in the activation
energies upon Fe doping. Both Al and Ga also exhibited a very small decrease in the
activation energies. Doping with Si on the Ge site had almost no effect on the activation
energies. In the current study, the dopant concentration was 1.8%. Further increases in the
dopant concentration would impact on the crystal structure and activation energies.

Table 3. Calculated activation energies of local Li hops (A and B).

Dopants Activation Energy (eV)

A B

Na 0.58 0.93

Fe 0.55 0.87

Al 0.54 0.86

Ga 0.56 0.84

Si 0.59 0.88

4. Conclusions

In conclusion, computational modelling based on classical potential was applied
to analyze the behavior of the defects, diffusion properties and solution of dopants in
Li2NiGe3O8. The results of the calculations found that Li-Ni cation mixing is present at low
concentrations in this material. Such cation mixing is expected to affect the properties of this
material. A three-dimensional Li-ion migration pathway was constructed. The activation
energy was 0.57 eV, in good agreement with the values reported in the experiment. The
lower value implies higher Li-ion conductivity. The most favorable isovalent dopants on the
Li, Ni and Ge sites are Na, Fe and Si, respectively. Both Li-interstitials and oxygen vacancies
can be introduced by doping with Al or Ga on the Ge site. Additional Li-interstitials would
enhance the capacity of Li2NiGe3O8, and oxygen vacancies would facilitate Li-ion diffusion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cleantechnol4030038/s1. Figure S1: A schematic representation of the defect models; Table S1:
Two-body Buckingham potentials used for the dopant oxides in Li2NiGe3O8.
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