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1. Introduction

Microstrip structures have been studied extensively using various types of full wave
analysis techniques. However, these techniques are having difficulties because they
usually invelve the solution of a very large system of linear equations. It this approach, a
symmetrical form of electric-field spatial-domain Green’s function [1] different from [2]
and [31 is applied. Further, the numerical solution of Maxwell’s equations at low
frequencies is plagued with numerous problems. Because of the discrepant frequency
dependence of the solenoidal and irrotational components of the current when the
frequency tends to zero, a working numetical method has to include this Helmholtz
decomposition and ascribe the requisite frequency dependencies to the solenoidal and
irrotatienal components of the current. This decomposition is achieved by selecting the
loop-tree basis [4], [5]. The use of the loop-tree basis, followed by frequency
normalization, solves the problem of singular matrices at low frequencies. However, if an
iterative solver is used, the iteration count is usually very large and may even diverge for
some problems. To overcome this problem, a method of transformation of the matrix
equations {6] is also applied,

2. Formulation

For a geometry of a microstrip structure as shown in Fig, 1, the spectral domain
Green’s function can be derived in a closed form as the sum of TE and TM to z-waves
propagating in the positive and negative z directions. After some derivations, the spectral

domain dyadic Green's function G inthe region z >0 can be written in & symmetric form
[1] as follows:
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k js the wavenumber in free space, k:’ =kf +k}2, and is the generalized

reflection coefficient of the layered medium. The spectral integration of (1) yields the
spatial domain Green’s function as follows:

& G-d'= (axa; +ayaLXgP +gTE‘R)+ a,a;(g" +gTM'R}
1 n Y 1 ~ At
A-Fa-vv-a gf +k—2a-VVAa,gTM’R )
-&-v, v, -ag™
where g’ = [[g’dk.dk,  f=P(TER),(TM,R)and EM

Using the dyadic electric-field Green’s function G for the layered medium, an electric-

field integral equation (EFIE) can be constructed by enforcing the total electric-field
tangential to the surface S to vanish
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where E'™ (r)can be the field of a impinging plane wave or the field created by a finite

source residing withinn the microstrip structure. Using the loop-tree basis function
designed for low-frequency problems,

¥ Ny
) =303 )+ YL A () @
n=1 n=}

we discretize the EFIE into a linear algebraic system of equations, where J,, (r") and
J o, (r") are the divergence-free surface-loop basis and the nondivergence-free surface-
tree basis, respectively. By substituting (4) into (3), testing with J ,,, {r) and §,, (r),
and applying V_.J,, (r)=0 and V_-J, (r')=0, we simplify to a matrix form as

follows: _
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Also, J,(r"y , 3,(r).Y,, 3,(r).J,(r), and I, are colurmn veclors comaining
J,@0, 3, )1, I, (), 1,,(r), and I, respectively.

When @ > (0 (k - 0), the matrix equation is unbalanced and ill conditioned. Since the

lower-right black of the matrix becomes dominant in an electric field equation, frequency
normalization can be used to balance the matrix as below:
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The above malrix equation is balanced and can be solved by the direct inversion method.
However, if the matrix equation is solved by iterative solvers, the iteration count is
usually very large. Even though the electrostatic part converges very slowly, the
magnetostatic part converges rapidly. However, the clectrostatic problern based on pulse
basis converges rapidly. Therefore, the charge basis arising from the divergence of the
current basis is the main reason for the mairix il conditioning. To avoid this, we
transform the electrostatic part in the matrix cquation by basis rearrangement so that the
resultant meirix reduces to that based on the pulse basis in the static limit as given in [6).
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Expanding the surface charge densities in terms of pulse basis ofr) = ZQ,,P..(!') and
n=1
applying the condition for the charge neutral system, we obtain the expression for the
surface charge density as follows:
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Using the current contimuity condition V- J(r} = iwp(r} , applying V,-1,(r}=0 ,
taking the inner product with P(r), we have

(P, V-3 (1)) 1, =i (P(r),N'(1)}-Q ®
In this manner, (P(r),N'(r)) is a diagonal matrix and we can rewrite () as
K 1, =iaQ ' (9)

where K is a square matrix. Applying (8) in (6), we obtain the transform matrix as
below with good spectral property and the matrix equation converges rapidly.

-z, g, L] v 0
KoK T, K Zy K[ Q] K/aKT-V,

639



3. Numerical results
Current distribution pattern shown in Fig. 2 has been obtained due (0 a & polarized

plane wave impinging the rectangular surface with the incident angle of & = 60° and
¢ = 0%at the frequency of 1 kHz. The current cocfficients have been obtained with 79
iterations for the unknowns of 1160. It is noted that the current distribution pattern
satisfies the symmetry on x axis since the incident angle ¢ = 0°,

4. Conclusion

A symmetric form of layered medium Green's function is successfully used to
analyze the microstrip structure at low frequencies with the help of loop-tree basis
functions, frequeney normalization as well as the basis rearrangement. It converges fast
and no low-frequency break-down occurs in the numerical computations. In the future, it
will be capable of solving large scale problems.
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