
Integral Equation Solution for Microstrip Structures at 
Low Frequencies 

Kandasamy Pirapaharan",  Weng C h o  Chew', and dun-Sheng Z h a d  

' Center for Computational Electromagnetics and Electromagnetics laboratory 
Department of Electrical and Computer Engineering, University of Illinois, 

Urbana, Illinois 61801-2991 

Madmax Optics, 3035 Whitney Avenue, Hamden, C T  06518 

1. Introduction 
Microstrip StmCNrCS have bcen shldied extensively using various types of full wave 

analysis techniques. However, these techniques are having difficulties because they 
usually involve the solution ofa  very large system of linear equations. In this approach, a 
symmetrical form of electric-field spatial-domain Green's function [I] different from [Z] 
and 131 is applied. Funhcr, the numerical solution af Maxwell's equalions at low 
frequencies is plagued with numerous problems. Because of the discrepant frequency 
dependence of the solenoidal and irrotational components of the current when the 
frequcncy tends to zero, a working numerical method has to include this Helmholtz 
decomposition and ascribe the requisite frequency dependencies lo the solenoidal and 
irrotational camponents of the current. This decomposition is achieved by selecting the 
loop-tree basis [4], IS]. The use of the loop-tree basis, followed by frequency 
normalization, solves the problem of singular malices at low frequencies. However, if an 
iterative solver is used, the iteration count is usually very large and may even diverge for 
some problems. To overcome this problem, a method of transformation of the matrix 
equations [6] is also applied 

2. Formulation 
For a geometry of a microsmp structure as shown in Fig. I, the spectral domain 

Green's function can be derived in a closed form as the rum of TE and TM to *-waves 
propagating in the positive and negative P directions. After some derivations, the specual 
domain dyadic Green's lbntioo in the region z xl CM be Wnllen in a symmetric form 

I 

[ I ]  as follows: 
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k i s  the wavenumber i o  free space, k,' = k: + kf and is the generalized 
reflection coefficient of the layered medium. The spectral integration of ( I )  yields the 
spatial domain Green's function as follows: 

6 .iZ.tz,= (ap: +a,a;Xg' + g T E . R ) + a l a : ( g P  +gTM.R) 
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where gB = IgBdk,dk, p=P,(TE,R),(TM,R)andEM 

Using the dyadic electric-iield Green's function Gfm the layered medium, an electric- 
field integral equation (EFIE) can be constructed by enforcing the total electric-field 
tangential to the surface S to vanish 

.=-- 

i u  I(gP(r,yr)+gTE,R(r,r'))l(r')dr' 

(3) 
+ S x V "  I[~(gp(T,T')-gTK,'(~,r'))+gEMIV: I .J(r')dr' = -ixE'"'(r) 

s k  
where E'"'(r)can be thc field of a impinging plane wave or the field created by a finite 
source residing within the microstnp smcture. Using the l ~ ~ p - t r c e  basis function 
designed for low-frequency problems, 

Ni 

J@') = ?ILn J L n  (r') + cI,J, (r') (4) 

we diseretize the EFIE into a linear algebraic system of equations, where JLa(r') and 

J, (r') arc the divergence-free surface-loop basis and the nondivergence-free surface- 

tree basis, respectively. By Substiruling (4) into (3), testing with J,(r) and .ITm@), 
andapplyingV;J,,(r)=O and V,.J, .(r')=O,wesimplifytoamatrixformar 

"d n=, 
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g"(r,r')= gP(r,r')+grE,'(r,r') 
gs(r,r') = (gp(r,r,) - gTM,' (r ,rr)+k*gEM) 
( A ( r ) , g ( ~ . ~ ' ) , B ' ( ~ ' ) )  = jA(r)dr .jg(r,r')B'(r')dr'. 

Also, JL(r') , J,(r) , I , ,  JT(r ' ) ,  J , (r) ,  and I ,  are column Y C C ~ O ~ E  containing 

JLn(r'), Jh(r) , fLn,  JTn(r') . J T m ( r ) .  and I,", respectively. 
When o + 0 (k + 0). the mavin equation is unbalanced and ill conditioned. Since the 
lower-right block of the matrix bccames dominant in an electric field equation, frequency 
nomalization can be used l o  balance the matrix as below: 

(6) 

The above matrix equation i s  balanced and can be solved by lhc direct inversion method. 
However, if the matrix equation is solved by iterative soIvcrs, the iteration count is 
usually veri  large. Even though the electro$tatic part converges very slowly. the 
magnetostatic pali converges rapidly. HOWCYCT, the clectroslatic problem based on pulse 
basis converges rapidly. Thcrefore, the charge basis arising from the divergence of the 
current basis is the main reason for the matfix ill conditioning. To avoid this, we 
transform the electrostatic part in the matrix equation by basis rcrrrangcment IO that the 
resultant matrix reduccs to that based on the pulse basis in the static limit as given in [6] .  

Expanding the surface charge densities in terms af pulse basis p ( r )  = IQDPa(r )  and 

applying the condition for the charge neutral system, we obtain the expression for the 
surface charge density as follows: 

*. 
"=, 

. .  
,Vs.l 

"=I 
.o(r) = C[p.(r) - ~ , ~ p , , ~  W]Q. = N ' ( ~ ) . Q  17) 

, N(r) and Q are vectors of length N ,  - 1  

Using the current continuity condition V . J(r) = iwp(r) , applying V ,  . d i(r) = 0 , 
taking the inner product with P(r), we have 

(8) (P(r),V . J:(r)), I ,  = io(P(r),N'(r)).Q 

In this manner, (P(r),N'(r)) is a diagonal matnn and we can rewrite (8) as 

where E is a square matrix. Applying (8) in (6). we obtain the transform matrix an 
below with good spectral popefly and the matrix equation conve~ges rapidly. 

- 
K . 1 ,  = i a Q  ( 9 )  
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3. Numerical results 
Current distribution pattem shown in Fig. 2 has been obtained due to a 4 polarized 

plane wave impinging the reetangular rurfacs with the incident angle of 0 = 60' and 
4 = OOat thc frequency of I kHz. The current cocfficients have been obtained with 79 
iterations for the unknowns of 1160. It is noted that the current distribution pattem 
satisfies the symmetry an x axis sincc the incident angle 4 = 0'. 

4. Conclusion 
A symmetric form of layered medium Green's function is successfully used to 

analyze the micmstrip stmcture at low frequencies with the help of loop-tree basis 
functions, frequency normalization as well as the basis reanangement. It converges fast 
and no low-frequency break-down occurs in thc numerical computations. In thc future, it 
will be capable of solving large scale problems. 
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Fig. 1: Microstrip ~UucNre Fig. 2: Current distribution pattem 
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