The convenient determination of palladium at a solid electrode via adsorptive stripping voltammetry at a glassy carbon electrode modified with a random array of mercury nanodroplets

Abiman, P., Wildgoose, G.G., Xiao, L. and Compton, R.G.

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, United Kingdom

Abstract

The detection of palladium using adsorptive stripping voltammetry reported by Wang et al. (J. Wang, K. Varughese Anal. Chim. Acta 1987, 199, 185 [3]) at a hanging mercury drop electrode is extended to a more convenient solid electrode. To this end a random array of 3.5×10^{-8} mercury nanodroplets per cm⁻² (65 nm average diameter) was electrodeposited on a glassy carbon substrate. Adsorptive stripping voltammetry was performed using 2×10^{-4} M dimethylglyoxime as a chelating agent for the Pd(II) ion, with accumulation at -0.20 V vs. SCE for 120 s and a linear detection range of 5 - 150 μ M was determined with a limit of detection of 1.6 μ M.

Author keywords

Adsorptive stripping voltammetry; Dimethylglyoxime; Glassy carbon; Mercury; Nanoelectrode array; Palladium