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Abstract

This paper presents the QUT speaker recognition system, as a
competing system in the Speakers In The Wild (SITW) speaker
recognition challenge. Our proposed system achieved an over-
all ranking of second place, in the main core-core condition
evaluations of the SITW challenge. This system uses an i-
vector/PLDA approach, with domain adaptation and a deep neu-
ral network (DNN) trained to provide feature statistics. The
statistics are accumulated by using class posteriors from the
DNN, in place of GMM component posteriors in a typical
GMM-UBM i-vector/PLDA system. Once the statistics have
been collected, the i-vector computation is carried out as in
a GMM-UBM based system. We apply domain adaptation to
the extracted i-vectors to ensure robustness against dataset vari-
ability, PLDA modelling is used to capture speaker and session
variability in the i-vector space, and the processed i-vectors are
compared using the batch likelihood ratio. The final scores are
calibrated to obtain the calibrated likelihood scores, which are
then used to carry out speaker recognition and evaluate the per-
formance of the system. Finally, we explore the practical appli-
cation of our system to the core-multi condition recordings of
the SITW data and propose a technique for speaker recognition
in recordings with multiple speakers.

1. Introduction
Recent advances in speaker recognition technology, specifi-
cally text-independent speaker verification, have brought about
significant gains in system accuracy. The joint factor analy-
sis (JFA) speaker modelling approach proposed by Kenny [1],
has evolved into a powerful tool for speaker verification. This
is because the JFA approach allows for modelling of inter-
speaker variability and compensation for channel/session vari-
ability in the context of high-dimensional Gaussian mixture
model (GMM) supervectors. This technique advanced to a
new front-end factor analysis technique, termed i-vector (for
intermediate-size vector) extraction, proposed by Dehak et al.
[2]. In this technique, rather than taking the JFA approach
of modelling a speaker and channel variability spaces, a low-
dimensional total-variability space that models both speaker
and channel variability is trained. The i-vector approach pro-
posed in [2], has the advantage of scoring using a cosine sim-
ilarity scoring (CSS) kernel directly to perform verification,
making the scoring process faster and less complex than other
speaker verification methods, including JFA or support vector
machines (SVM).

The use of i-vectors for speaker modelling has been estab-
lished as the state-of-the-art approach to representing speech
segments produced by a speaker identity, however i-vectors are

susceptible to unwanted variations due to mismatch of linguistic
content and recording channel information between segments of
speech spoken by the same speaker identity. To overcome this,
a range of techniques, such as within-class covariance normal-
isation (WCCN), linear discriminant analysis (LDA) and nui-
sance attribute projection (NAP) were proposed and shown to
be effective for this purpose [3]. Kenny [4] then introduced
the use of the PLDA approach for modelling channel variabil-
ity within the i-vector space. The PLDA technique was orig-
inally proposed by Prince et al. [5] for face recognition, and
later it was adapted for modelling the i-vector distributions
for speaker verification [4]. Two PLDA approaches, Gaussian
PLDA (GPLDA) and heavy-tailed PLDA (HTPLDA) were in-
troduced [4, 6]. Garcia-Romero et al. [6], demonstrated that the
heavy-tailed behaviour of i-vector features can be converted into
Gaussian behaviour by using a length-normalized approach, and
thus length-normalized GPLDA was demonstrated to achieve
similar performance to the HTPLDA technique.

Until recently the use of a GMM universal background
models (UBM), trained on large amounts of unlabelled data for
capturing phonetic variations of speech in an unsupervised man-
ner, was the state-of-the-art approach and an essential part of
speaker recognition technology. The successful application of
deep neural network (DNN) acoustic models to the task of au-
tomatic speech recognition (ASR) [7] and the significant gains
in accuracy that resulted from the use of a DNN for this task,
has brought about proposals for the use of such a DNN in the
task of speaker recognition [8, 9]. In order to apply such an
ASR DNN to the task of speaker recognition, the GMM-UBM
is replaced by a DNN to collect sufficient statistics for i-vector
speaker modelling [9]. The input to the DNN is frequency-
domain features, such as the mel-frequency cepstral coefficient
(MFCC) features, while the output of the DNN provides soft
alignments for phonetic content, in the form of tied triphone
states, referred to as senones [8]. This technique has resulted
in significant improvements over GMM-UBM i-vector systems
[8]. It is hypothesised that this is due to the ability of the DNN
to model phonetic content/variations directly, as opposed to the
unsupervised expectation-maximization (EM) approach in the
GMM-UBM training process for capturing some acoustic pat-
terns in the data, which would highly depend on the training
data. This however is achieved at the cost of higher computa-
tional complexity and can put significant strain on resources.

Another factor that can significantly impact the perfor-
mance of speaker verification systems is the mismatch between
audio domains of the training and test data. The performance
variation due to cross-domain speaker verification, was first
addressed at the Summer Workshop at Johns Hopkins Uni-
versity (JHU) held in 2013 [10]. Results presented in that



workshop clearly highlighted the performance gap between in-
domain and out-domain development for speaker verification,
which must be addressed. This task was deemed the Domain
Adaptation Challenge (DAC) [10]. We use a dataset invari-
ant covariance normalization (DICN) approach to compensate
the mismatch between in-domain and out-domain datasets in
the i-vector space. Instead of capturing the mismatch directly
between out-domain and in-domain data [11], we capture the
mismatch as compared to a global mean i-vector [12]. This is
detailed further in the paper.

We proposed and developed a state-of-the-art DNN i-vector
speaker verification system, with inter-dataset variability PLDA
[12]. We submitted our system’s evaluation results to the Speak-
ers In The Wild (SITW) 2016 speaker recognition challenge
[13]. Our proposed system achieved a ranking of second place,
out of all participating teams, in the main core-core condition
evaluations across the SITW evaluation data. In this condi-
tion, a segment of audio with speech from a single speaker (but
including potential non-speech and noise) is compared to an-
other segment of speech from a claimant (also possibly includ-
ing non-speech and noise). This paper provides a detailed sys-
tem description of our submitted system, providing details of
our DNN, i-vector extraction process, inter-dataset variability
compensation, i-vector scoring and score calibration. We detail
our training and development data, report our results obtained
across the core-core evaluation conditions of the SITW test data
and discuss the limitations of applying a DNN i-vector system
to the core-multi condition of the SITW evaluation data [13],
proposing a possible strategy.

2. Data used for training and development
In order to train a DNN for extracting feature statistics, we use
300 hours of data from the Fisher corpus [14].

We use the NIST SRE 2004, 2005, 2006 and 2008 datasets,
as well as Switchboard phase II and III, and Switchboard Cel-
lular Part 2 corpora for training the total variability matrix for
i-vector extraction.

For inter-dataset variability compensation in the i-vector
space [11, 12], we compute the mean i-vector from 651 speak-
ers in the SITW development set.

For PLDA training, we pooled together telephone conversa-
tion data from the NIST SRE 2004, 2005 and 2006 datasets, to-
gether with Switchboard I and II, as well as Switchboard phase
I, II and III corpora. We used data from a total number of 4800
speakers, across 32095 sessions.

In order to carry out score calibration, after obtaining the
full set of scores over all SITW core-core development data,
the BOSARIS toolkit [15] was used to calibrate the evaluation
scores into true log-likelihood-ratios using the non-parametric
PAV (pool adjacent violators) approach [15], based on the
scores returned on the labelled SITW dev dataset.

3. DNN for collecting feature statistics
The recent use of ASR DNNs in place of a GMM-UBM for
collecting sufficient statistics, for i-vector training in the task
of speaker recognition, has brought about significant improve-
ments [7, 8]. Waibel et al. first proposed the use of time-delay
neural networks (TDNN) for phoneme recognition [16]. This
motivated the work by Snyder et al. [9], which proposed the
use of such a DNN for obtaining sufficient statistics for i-vector
training. TDNNs are capable of dealing with long temporal
contexts and can hence better model the long-term changes of

acoustic events in speech [16, 9].
We use the Kaldi toolkit [17] to develop our DNN for col-

lecting feature statistics. We follow the DNN recipe proposed
for speaker recognition by Snyder et al. [9], and train a multi-
splice TDNN with six hidden layers and a splicing configura-
tion. The hidden layers use a p-norm activation function (where
p=2). The input layer takes 40 dimensional MFCC features with
5-frame temporal context and cepstral mean subtraction (CMS)
performed over a window of 6 seconds. The features are ex-
tracted every 25ms with a 10ms window shift. Each hidden
layer has 350 nodes, the output dimension is 3500 and a soft-
max output layer computes posteriors for 5,346 senone targets
[9, 8]. The forced alignment between the state-level transcripts
and the corresponding speech signals by the GMM/HMM tri-
phone system is used to generate labels for DNN training.

As the non-speech segments of SITW data can negatively
impact system accuracy, we use the energy-based voice activ-
ity detection (VAD) provided in the Kaldi toolkit [17] to carry
out VAD prior to extracting the sufficienct statistics using our
trained DNN. This approach uses an energy threshold across the
zero coefficient of extracted MFCC features to carry out VAD.
We use a threshold value of 5.5.

4. i-vector based speaker verification
Rather than decomposing a GMM mean supervector into sepa-
rate channel and speaker components, as in the JFA approach,
Dehak et al. [2] proposed the representation of a GMM mean
supervector in a single space that capture all variabilities. This
was motivated by the discovery that the channel space of JFA
still contains information that can be used to aid the task of
speaker verification.

In the i-vector approach, both the speaker and channel de-
pendent GMM supervectors are represented by a single i-vector
and its projection based on the total variability space,

M = m + Tw, (1)

where m is the speaker and session independent UBM mean su-
pervector, T is a low rank matrix referred to as the total variabil-
ity matrix. w is the total variability factor (or i-vector) which is
normally distributed. A detail procedure of total-variability sub-
space (T) training and i-vector extraction is described in [2, 18].

We employ the Kaldi toolkit [17] to compute and extract
600-dimensional i-vectors using the feature statistics provided
by our trained DNN (detailed in Section 3). We use 20-
dimensional MFCC features for extracting i-vectors, with the
energy-based VAD (as described in Section 3) applied as the
front-end processing stage.

5. Inter-dataset variability compensation
As we use telephone conversation data for training, it is nec-
essary to minimise the impact of dataset variability on the ac-
curacy of our system. To capture potential dataset variability,
we apply inter-dataset variability compensation in the i-vector
space. In this approach dataset variability is captured using the
outer product of the difference between the training i-vectors
and the mean of the i-vectors extracted from speakers in the
SITW-dev dataset [11, 12]. The training dataset is then pro-
jected into a new, dataset variability compensated, subspace.

ΣDV C =
1

N

N∑
n=1

(wn − w̄)(wn − w̄)
′
, (2)



where N is the total number of development i-vectors and w̄ is
the mean of combined set of NIST and SITW i-vectors, which
can be calculated as follows,

w̄ =
1

M

M∑
i=1

wi. (3)

The training dataset is then projected into a new, dataset
variability compensated, subspace.

The matrix A is used to first scale the subspace, where
AAT = Σ−1

DV C . The dataset variability compensated devel-
opment i-vectors are then extracted as follows,

ŵ = ATwdev. (4)

6. Linear discriminant analysis (LDA)
LDA is a channel compensation method [2, 19], which attempts
to find the orthogonal directions in the feature space to mini-
mize the intra-class variance caused by channel and maximize
the variance between speakers through the eigenvalue decom-
position of,

Σbv = τΣwv, (5)

where τ is the eigenvalues, v is the eigenvector, Σw is within
class matrix and Σb is between class matrix.

The between-and within-class covariance matrices are
given determined as follows,

Σb =

S∑
s=1

ns(w̄s − w̄)(w̄s − w̄)′, (6)

Σw =

S∑
s=1

ns∑
1=1

(ws
i − w̄s)(ws

i − w̄s)′, (7)

where S is the total number of out-domain speakers, ns is the
number of sessions of speaker s. w̄s is the mean i-vector for
each speaker and w̄ is the mean of all speakers.

In the low dimensional space resulting from the linear trans-
formation G, the within class and between class matrices be-
come Σw = GTΣbG. An optimal transformation matrix G is
then trained to maximise trace (Σb) and minimise (Σw),

max
G
{Σ−1

w Σb}. (8)

The LDA projected i-vectors are calculated as follows,

wLDA = GTw. (9)

7. Length-normalized GPLDA system
Rather than compensating for channel variability in the i-vector
space using the subspace transformation approach, a more
generative approach heavy-tailed (HTPLDA) is introduced by
Kenny [4] to model session and channel variability in the i-
vector space. But recently Garcia-Romero et al. [20] have intro-
duced a length-normalized approach to convert the heavy-tailed
behaviour to Gaussian behaviour, which is in performance com-
parable to, but computationally more efficient than, heavy-tailed
(HTPLDA).

In this approach the non-Gaussian behaviour of i-vector
features are converted into Gaussian i-vector feature behaviour.
This technique consists of two steps: (1) linear whitening

and (2) length normalization. A linear-whitened i-vector
wLDA−wht can be estimated as follows,

wLDA−wht = d−
1
2 UTwLDA, (10)

where U is an orthonormal matrix containing the eigenvectors
and d is a diagonal matrix containing the corresponding eigen-
values.

A length-normalized i-vector wnorm can be found as fol-
lows,

wnorm
LDA =

wLDA−wht

‖wLDA−wht‖
. (11)

A speaker and channel dependent length-normalized i-
vector can be defined as,

wnorm
LDA−r = wnorm

LDA + U1x1 + εr, (12)

where for given speaker recordings r = 1, 2, ...R; wnorm
LDA +

U1x1 is the speaker specific part and εr is the channel spe-
cific component; The covariance matrix of the speaker compo-
nent is U1U

T
1 and the covariance matrix of the channel com-

ponent is Λ−1. Training of the eigenvoice matrix U1 is the
same as learning the eigenvoice matrix V in the JFA modelling
approach [2, 1].

GPLDA scoring is calculated using the likelihood ratio [4].
Given target i-vectors wtarget and test i-vectors wtest, batch
likelihood ratio can be calculated as follows,

ln
P (wtarget,wtest | H1)

P (wtarget | H0)P (wtest | H0)
, (13)

H1: The speakers are same, H0: The speaker are different.

8. Results and discussions
We first evaluated our approach across all data from the de-
velopment set of the SITW core-core condition [13], obtain-
ing batch likelihood scores for each development trial. The ob-
tained scores were then assessed against the development keys
and used for score calibration of the likelihood scores obtained
in the core-core condition evaluations. This was done using the
approach described in Section 7.

In this section we first present our system’s performance
across the SITW evaluation data, as assessed by the organisers
of the SITW 2016 challenge [13]. We then discuss our efforts
in addressing the core-multi condition evaluations and discuss
the pitfalls of applying a DNN i-vector/PLDA approach to such
computationally demanding tasks.

8.1. SITW core-core evaluations

Figure 1 displays the team leaderboard for the main core-
core evaluations across the SITW dataset. Our proposed sys-
tem, the QUT speaker recognition system, is displayed as the
QUT 01 core-core system. It can be seen that our proposed ap-
proach achieved an overall ranking of second place. We submit-
ted two identical systems to the challenge, with the difference
in the two systems being in the application of inter-dataset vari-
ability (IDV) compensation. Table 1 represents the performance
of our submitted systems in this challenge. Our system that is
ranked in the leaderboard is our best system, which includes
IDV compensation. We believe one of the key components of
our system that provides significant accuracy is our proposed
IDV PLDA technique [12], detailed in Section 5.



Figure 1: SITW 2016 Speaker Recognition Challenge
leaderboard, indicating the second place ranking achieved
by the QUT system in the main core-core track. The
leaderboard contains the best submission, from each
team per condition, ranked by the primary metric Cdet
(http://www.speech.sri.com/projects/sitw/).

Table 1: QUT systems performance for the main core-core track
System Training Cdet minCdet avgRPec EER Cllr

QUT 01 core-core IDV-PLDA 0.6477 0.6038 0.6609 0.0869 0.2920
QUT 02 core-core GPDLA 0.6519 0.6400 0.6455 0.0842 0.2982

8.2. Exploring the SITW core-multi evaluations

The core-multi evaluation track of the SITW challenge requires
the enrolment of a recording containing speech from a single
speaker identity, which is then needed to be compared to an
unlabelled recording containing speech from multiple speakers.
The goal of the task is then to identify if the enrolled speaker
also appears in the multiple-speaker, trial recording [13].

We attempted to fully participate in this evaluation track,
however due to the computationally expensive nature of the
DNN approach, limitation of resources and a lack of time, we
were limited to exploring this track. For this reason, we first be-
gin by proposing a practical approach to speaker verification un-
der the core-multi evaluation conditions and report on the results
that we were able to complete within the limited timeframe. We
believe our approach has the potential to provide competitive
performance and thus see merit in providing a brief description
and discussion in this section.

The comparison of an enrolment recording to a trial record-
ing, for speaker verification, is straightforward across the core-
core data. This becomes more difficult when dealing with
the core-multi condition data. One solution is to segment the
trial recording into speaker-homogeneous segments. These seg-
ments can then be compared and scored against the enrolled
speaker to make a decision regarding an identity match.

We draw from our speaker diarization research in [21] and
propose the use of an ergodic hidden Markov model (HMM) for
segmenting the trial recording into speaker-homogeneous seg-
ments. We first mark arbitrary speaker-change points in the trial
recording, at 10 second intervals. We then model each of these
segments as a state within an ergodic HMM. Each state/segment
is modelled using a 32-component GMM [21]. We then carry
out three iterations of Viterbi segmentation, with a minimum
duration of 2.5 seconds, to refine the segment boundaries. It
must be noted that as we use an ergodic HMM, merging of
states/segments is also valid for non-adjacent segments, across
the entire trial recording. Figure 2 displays the architecture of
our HMM segmentation system. To take further advantage of
the ergodic architecture of this system, we include the enrol-

Figure 2: Ergodic HMM segmentation approach for segmenting
the trial recording, where each state is a GMM and state 1 rep-
resents the enrolment data that is used to improve segmentation
of the POI in the trial recording.

ment recording as an additional state in the segmentation pro-
cess. As we know that the enrolment data only belongs to a
single speaker, we can use this constraint to leverage the in-
formation in the enrolment recording for (ideally) improving
the segmentation of the person of interest (POI) in the trial au-
dio. After segmentation is carried out, each unique and ideally
speaker-homogeneous segment in the trial recording is mod-
elled using a GMM-UBM i-vector/PLDA approach and batch
likelihood scoring is carried out to score each of these segments
against the enrolment recording. It would be a sound assump-
tion that (after voice activity detection) a match between a trial
segment and the enrolment data would achieve the best batch
likelihood score, out of all possible scores between the enrol-
ment recording and trial recording segments. We thus select the
best possible batch likelihood score from this set, as the likeli-
hood of the presence of a POI in the trial recording.

We were able to complete a total of 1,996,823 trials of the
core-multi evaluations, for which we achieved an overall EER
of 11.1%. As score calibration would require the processing of
the entire development set in the core-multi condition trials, we
were unable to achieve a complete system to submit for ranking
in this condition category core-multi. It must be noted that we
did not apply inter-dataset variability compensation in our core-
multi, which may have improved our results further.

9. Conclusions
We proposed the QUT speaker recognition system and were
successful in achieving a second place ranking in the main core-
core condition of the SITW 2016 evaluations. This system
is based on a DNN i-vector/PLDA system, with inter-dataset
variability compensation used to improve cross-domain evalu-
ations. We also explored the core-multi evaluation track of the
SITW challenge data. We utilized an ergodic HMM segmen-
tation approach, that takes advantage of the enrolment data to
segment the trial recording into speaker-homogenous segments
that can be assessed against the enrolment data to make a ver-
ification decision. We aim to further explore and analyse the
various tracks of the SITW data in our future work.
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