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Abstract—Multi-access edge computing (MEC) is emerging as 

a solution to serve offloaded tasks from mobile devices that are 

computing intensive and have very low latency and high 

bandwidth requirements. Since compute resources are limited at 

the MEC hosts, collaboration among hosts could enhance the 

capabilities of sharing limited resources while minimizing the cost 

of such hosts. However, the selection of optimal hosts to instantiate 

the user applications is a major challenge when considering the 

total service provisioning cost. In this paper, we formulate the 

MEC hosts selection problem as a binary integer problem with the 

objective to minimize the total cost of providing the offloading 

services. We extend the Balas-Geoffrion algorithm to solve the 

special case of binary programming problems similar to MEC host 

selection problem. The time complexity of the MEC host selection 

problem is therefore minimized. We show that our modified 

algorithm outperforms Balas-Geoffrion algorithm in the number 

of iterations required to reach the optimal solution. Then we 

conduct an extensive simulation to show that the overall quality-

of-service of the MEC system is improved by the MEC hosts 

collaborations in a limited bandwidth scenario by up to 13%. 

However, the tradeoff is an increase in the cost of provisioning the 

services.  

Keywords- multi-access edge computing; multi-access edge hosts 

collaborations; multi-access host selection; Balas additive algorithm 

I. INTRODUCTION 

Multi-access edge computing (MEC) is the next paradigm of 
mobile edge architecture in the fifth generation (5G) mobile 
communications to support future mobile applications. New and 
emerging applications such as virtual reality, mixed reality 
applications require high computing resources and very low 
latency. As smartphone devices have constraint in local 
computing resources and battery capacity, offloading computing 
intensive tasks to MEC system is considered as a promising 
solution. MEC was originally proposed as a three-tier 
architecture in which MEC hosts that are located between the 
cloud datacenters and the end users could provide edge 
computing services to the end users [1]. Depending on the 
application requirements, offloaded tasks could be either 
executed at the MEC host or the cloud data centers. Offloaded 
tasks from mobile users with stringent requirements could be 
executed in the MEC host and offloading tasks with flexible 
requirements could be executed at the cloud datacenters. In this 
paper, we focus on applications with stringent requirements in 
terms of computation, latency and network bandwidth. 

MEC hosts can be deployed at a radio node, or at the edge of 
the core network, or at an aggregation point that is between the 
radio node and the edge of core network [1]. In order to 
maximize the utility of the MEC hosts with limited resources, 
collaboration among MEC hosts is proposed in [2]. 
Consequently, resource allocations within the MEC 
infrastructure, which comprises of multiple MEC hosts in 
multiple network locations, becomes a major challenge.  

When an application in a mobile device sends an offloading 
request, this request will be processed by a MEC orchestrator to 
decide an appropriate MEC host to accept the request. Then a 
“user application” will be instantiated at the selected MEC host 
in response to the offloading request of the device application. 
However, each user application could have different 
requirements. Thus, selecting the ideal MEC hosts to instantiate 
the user application by abiding user application’s rules and 
requirements such as the required resources, latency, 
connectivity and mobility, is a critical challenge for the MEC 
service providers. Solving this challenge is known as the MEC 
hosts selection problem. Limitations of resources (bandwidth 
and computing) and the associated usage costs should be jointly 
considered in solving the MEC hosts selection problem in order 
to minimize the overall network costs. However, to the best of 
our knowledge, consideration of the cost of provisioning the 
MEC offloading services in the MEC hosts selection problem 
has yet to be fully investigated. Here, we address the key 
question of how to minimize the total cost incurred by the MEC 
service providers in selecting the ideal MEC hosts to instantiate 
the user application in a collaborative environment without 
compromising latency requirements. Therefore, the 
contributions of this paper are as follows.  

• We first formulate the MEC hosts selection problem as a 
1-0 integer program (binary programming) problem to 
minimize the total cost of provisioning the offloading 
services at the MEC host; 

• We then extend the use of Balas-Geoffrion additive 
algorithm to find the optimal solution for the special case 
of binary programming problems similar to the MEC 
hosts selection problem. Our modifications are as 
follows: 

o We modified the strategy to select the free 
variable, which has the minimum coefficient 
in the objective function. 
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o We simplify the algorithm described in [3] to 
omit the tests that are not relevant to the 
context of this special case problems; 

• Our proposed algorithm minimizes the computation time 
complexity since only the addition and subtraction 
operations are employed to find the optimal solution; 

• We show that the number of iterations to find the optimal 
solution in our extedned algorithm outperforms the 
original Balas-Geoffrion algorithm using simulations; 

• We then show the tradeoff between the servicing costs 
and the number of tasks rejected in the collaborative and 
independent methods respectively. 

The remaining sections are organized as follows. Section II 
discusses the related work in MEC host selection. Section III 
discusses the methodology and our modifications on the Balas-
Geoffrion additive algorithm. Then, Section IV discusses the 
simulation setup and results that verify the effectiveness of the 
optimization and the MEC hosts collaborations. Finally, Section 
V concludes the paper with a summary of the insights gained 
from our work. 

II. RELATED WORK 

Application placement algorithms related works can be 
found in various domains such as content distribution or cloud 
server management. In [4], the authors developed algorithms for 
resource allocations in a geographically distributed cloud 
environment. The problem is formulated as finding the nodes 
with available resources to minimize the latency between the 
selected nodes. They proposed an algorithm based on subgraph 
selection of the hierarchical network topology inside the 
datacenters. 

 In [5], the placement problem is studied in the context of 
content delivery networks. They design heuristics that replicate 

and deploy objects on selected nodes so that the cost is 
minimized. The cost is calculated based on the hop count. They 
concluded that the greedy approach can result in a performance 
that is close to the optimal. A placement method is applied to 
solve the problem of distributing workloads to multiple 
computing nodes in [6]. 

Some existing works on application placement and 
scheduling in MECs have considered applications with two 
components, one running on the cloud (which can either be by 
the MEC or core cloud) and the other running on the mobile 
device [7] [8]. Another body of existing work usually involves 
only two physical computing entities (i.e., the mobile device and 
the cloud) [9] [10]. Multi-component applications that can be 
deployed across one or multiple levels of MECs and core 
cloud(s) have not been considered [11], whereas such 
applications widely exist in practice because MEC hosts can be 
located at different hierarchical levels of the network [12]. A 
task placement algorithm of an edge computing orchestrator is 
also proposed in [13] that performs replication and placement of 
application components in a telecom-driven application-hosting 
infrastructure. Pre-computed shortest paths heuristics algorithm, 
which runs in polynomial time, is highlighted as the only 
solution that comes very close to optimality in polynomial time. 

Collaborative service placement for mobile edge computing 
application is considered in [14] with the aim of minimizing the 
traffic load caused by service request forwarding. Optimal 
placement of virtual machine replica copies to minimize the 
average response time is studied in [15] and a hysteric placement 
algorithm is proposed. The Nova scheduler of OpenStack [16] 
is an existing application placement architecture that selects 
suitable computing nodes to initiate the virtual machines. 
However, it is explicitly disconnected from the networking 
component and does not consider requirements such as latency, 
connectivity and mobility that originated from the application 
providers [13]. 

III. METHODOLOGY 

A. Computation task offloading 

Computation offloading requirements: The MEC 
orchestrator is responsible to instantiate the user application in 
the most suitable MEC host(s) in the MEC system in response 
to the request from the device. The MEC hosts selections  should 
satisfy the rules and requirements of the request such as 
deployment mode, specific hardware requirement, required 
resources, latency, connectivity and mobility requirements. 
Once the user application is instantiated in the MEC hosts, 
device application collaborates with user application to offload 
the whole or part of the computation tasks. 

Costs: On the other hand, hosting offloading services to the 
customers incur costs to the MEC service providers. Computing 
resources and network bandwidth resource usages may have 
separate cost structures. Thus, from the MEC service provider’s 
point of view, the objective is to minimize the total cost incurred 
by the MEC system when provisioning the offloading services 
while satisfying the service requirements of the MEC 
application. 

These MEC service dependencies of a user application can 
be represented in a graph as shown in the Fig. 1 (a). Vertices of 

Figure 1(a) MEC service dependency graph of a user application 

(b) network topology graph of the MEC system 
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the graph represent the MEC services and the edges represent 
the task offloading requests within the services. Each MEC 
service request from the user application can be considered as a 
computational task offloading request from the user application. 
Computation intensive tasks (𝑇) can be represented by the size 

of the offloading data (qN), task deadline (𝜏𝑀𝐴𝑋) and the number 
of CPU cycles required to complete the task (𝑞𝐶 ), i.e., 𝑇 ≜
(𝑞𝑁, 𝜏𝑀𝐴𝑋  , 𝑞𝐶).  

On the other hand, MEC hosts deployment can be 
represented in MEC network topology graph as shown in Fig. 
1(b). Vertices of the graph represent the MEC hosts and the 
MEC host capacity in terms of compute resources. Edge of the 
graph indicates the network capacity in terms of bandwidth 
resources. A complete topology graph of the MEC system can 
be generated in which there is a direct communication link 
between all pairs of MEC hosts. It should be noted that both 
compute and bandwidth resource usages are associated with 
different costs in the complete graph. 

B. Minimizing the total cost in MEC host selection  

Let MEC hosts in the MEC system be represented in a set  
𝐻 = {1,2, … ℎ, … }. Let 𝐼 (𝐼 ⊆ 𝐻) be the filtered subset of the 
MEC hosts that could support the rules and requirements of the 
MEC applications such as special hardware requirement. 
Different MEC services might be required by the user 
application. Let 𝐽(𝐽 ⊆ 𝐻) be the filtered subset of MEC hosts in 

which the required services are hosted. Let 𝑥𝑖,𝑗
𝑁  be the maximum 

amount of network bandwidth that can be allocated to the user 
application during the data transmission to be used between the 
MEC hosts 𝑖 and 𝑗. This network bandwidth allocation is based 
on the network resource allocation policy of the MEC service 
providers and the available bandwidth. For instance, a maximum 
of 50% of the remaining bandwidth can be allocated to the 
incoming resource request. Thus, the minimum network latency 

is given by 𝜏𝑖,𝑗 
𝑁 = 

𝑞𝑖,𝑗
𝑁  

𝑥𝑖,𝑗
𝑁 , where 𝑞𝑖,𝑗

𝑁  is the data that needs to be 

transmitted between the MEC hosts. Further, the data 

transmission cost is 𝑒𝑖,𝑗
𝑁 ∗  𝑞𝑖,𝑗

𝑁 , where 𝑒𝑖,𝑗
𝑁  is the cost of 

transferring a unit of data between MEC hosts.  

Let 𝑥𝑖
𝐶   be the maximum computing resource that can be 

allocated at the MEC host during the task execution. Noted that 
the computing resource allocation also depends on the MEC 
service provider’s resource allocation policy and the resource 
availability at the MEC host with limited resources. Thus, the 

minimum computing latency in the servicing MEC host is 𝜏𝑖
𝐶 =

 
𝑞𝑖

𝐶

𝑥𝑖
𝐶 , where 𝑞𝑖

𝐶  is the required computing resources. The 

computing cost is thus 𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 , where 𝑒𝑖
𝐶 is the unit allocation 

cost of the computing resources at MEC host i. The total service 
cost is the sum of the data transmission costs and computing 

costs, i.e., 𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 + ∑ ( 𝑒𝑖,𝑗
𝑁 ∗  𝑞𝑖,𝑗

𝑁 + 𝑒𝑗
𝐶 ∗ 𝑥𝑗

𝐶)𝑗∈𝐽 . We assume 

each service are independent and can be consumed in parallel.   

The objective of the MEC service providers is to minimize 
the total cost incurred by provisioning the offloading services 
while maintaining the quality-of-service (QoS): 

  min { ∑ 𝛼𝑖  (𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 + ∑ ( 𝑒𝑖,𝑗
𝑁 ∗  𝑞𝑖,𝑗

𝑁 + 𝑒𝑗
𝐶 ∗ 𝑥𝑗

𝐶
𝑗∈𝐽 )) 𝑖∈𝐼 }  () 

Subject to;  

      𝛼𝑖(𝜏𝑖
𝐶 + max{𝜏𝑗

𝐶 + 𝜏𝑖,𝑗 
𝑁 }) ≤  𝜏𝑀𝐴𝑋 ∀ 𝑖 ∈ 𝐼, ∀ j ∈ J () 

                      ∑ 𝛼𝑖𝑖∈𝐼 ≥ 𝑚 and 𝛼𝑖 ∈ {0,1} () 

where 𝑒𝑖
𝐶 ≥ 0 , 𝑒𝑖,𝑗

𝑁 ≥ 0 𝑒𝑗
𝐶 ≥ 0, 𝑥𝑖

𝐶 ≥ 0 , qi,j
N ≥ 0,  𝑥𝑗

𝐶 ≥ 0  

and 𝛼𝑖 is a binary variable. If 𝛼𝑖 =  1, the MEC host is selected 
for instantiating the user application, otherwise it is not selected. 
In addition to the latency constraints in Eq.(2), we have another 
constraint in Eq. (3): at least 𝑚 MEC hosts shall be selected to 
instantiate the user application as per the deployment mode 
requirement of the application.  Eq. (3) can be written as 

     − ∑ 𝛼𝑖𝑖∈𝐼 ≤  − 𝑚 and 𝛼𝑖 ∈ {0,1}  ()  

The optimal (feasible) solution needs to satisfy Eqs. (1) (2) 
and (4). We can represent the above minimization problem in 
the standard form as follows: 

                            min{ ∑ 𝛼𝑖 ∗ 𝑧𝑖  𝑖∈𝐼 } ()  

Subject to; 

                   ∑ 𝛼𝑖 ∗ 𝑦𝑖,𝑘 +  𝛽𝑘 = 𝛾𝑘   𝑘 = 1,2 () 

where  𝑧𝑖 =  𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 + ∑ ( 𝑒𝑖,𝑗
𝑁 ∗  𝑞𝑖,𝑗

𝑁 + 𝑒𝑗
𝐶 ∗ 𝑥𝑗

𝐶)𝑗∈𝐽  and 

slack variable of the constraint k is  𝛽𝑘(≥ 0). Objective cost 
function is derived using cost functions of network and 
computing resources. Similarly, latencies are derived from the 
resource limitations in the network and computing resources. As 
all the cost components are non-negative, the total cost is also 
non-negative (𝑧𝑖 ≥ 0 ).  

We consider Eqs. (1), (2) and (4) as MEC hosts selection 
problem. The problem is dual feasible as 𝑧𝑖 ≥ 0. Further, by 
analyzing the problem, we have only one constraint with all 
nonpositive constant (-1) coefficients as in Eq. (4) and other with 
all nonnegative coefficient as in Eq. (2). In other words, it is a 
minimization problem with an upper bound constraints with all 
positive coefficients and all negative constant coefficients.  

C. Balas-Geoffrion additive algorithm 

It is important to note that the solution of MEC hosts 
selection problem will be a 0-1 integer (binary) programming. 
Binary programming is NP-complete and is one of Karp's 21 
NP-complete problems [17]. Techniques available for solving 
the 0-1 integer programming problem include algorithms of 
Glass, Balas, Glover, Lawler and Bell, Geoffrion, Lemke and 
Spielberg etc. as summarized in [3]. These additive algorithms 
are enumerative and developed for solving 0-1 binary 
programming problems. The general idea of additive algorithm 
is to enumerate though some of all 2n possible solutions of a 
problem explicitly to find the best solution.  

Bala’s additive algorithm [18] with some modifications can 
be applied to solve the MEC host selection problem as it is dual 
feasible.  The approach of Bala’s algorithm that makes it 
efficient is that only some solutions are selected for explicit 
enumeration. Geoffrion reformulated the additive algorithm by 
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reducing the spatial complexity (storage) to improve the 
efficiency of the Balas algorithm [19]. The only operations 
required under the algorithm are additions and subtractions.  

The computation complexity of addition and subtractions is 
ϴ(n) whereas the computational complexity of multiplication 
and division is ϴ(n2). This shows the advantage of applying 
additive algorithm in terms of computational complexity in 
solving the MEC selection problem. Another advantage of the 
algorithm is that it provides near optimal solution, even if the 
calculations stop before all the possible solutions are 
enumerated. [20]. 

D. Extended Balas-Geoffrion additive algorithm 

Even though, Balas-Geoffrion algorithm can be applied to a 
general binary programming problem, it is not efficient in 
solving binary problems with upper bound constraints with all 
positive coefficients and all negative constant coefficients. We 
modified the strategy of selecting free variables and 
fathoming tests of Balas-Geoffrion algorithm to improve the 
efficiency of the algorithm for the above-mentioned special 
case of binary programming problems. Bala’s strategy was to 
choose the free variables, which would then result in the least 
infeasibility. As we have an upper bound constraint with all 
negative constant coefficients, least infeasibility calculations 
will end up listing all the free variables and have to select one 
free variable randomly. Thus, we modified the strategy to select 
the free variables, which have the minimum coefficient in the 
objective function in order to guarantee the optimality of the 
problem.   

Balas developed four tests as described in [3] to validate 
whether the given partial solution is fathomed or not. Based on 
the context of our problem, we omit Tests 1 and 3 in [3]. Because 
all the coefficients in each constraint are either positive or 
negative, there is no nonnegative coefficient for a free variable 
in all the constraints in Test 1 and hence should be omitted. 
Similarly, in Test 3,  if the slack variable of a partial solution is 
negative, it should be from one of the upper bound constraints 
with all positive coefficients. Thus, there is no way to improve 
it by converting it to be positive by assigning 1 to any free 
variables in that constraint.  

If the algorithm terminates with the feasible solutions, then 
the computation offloading request will be accepted, otherwise, 
the offloading request will be rejected. We define the total 
requests accepted in the MEC system as a metric of performance 
measurement to compare the collaborative MEC hosts method 
and non-collaborative (independent) MEC hosts method. 

IV. SIMULATION AND RESULTS 

A. Simulation set up 

In order to evaluate the performance of MEC hosts 
collaborations, we simulated the MEC hosts selection problem 
involving an urban area of 2 km × 2 km served by a mobile 
wireless network in which radio nodes are spaced 200 m apart. 
We assumed a total of 1,000 users, each with a mobile device 
moving in vehicles for an hour, i.e., 3,600 seconds during the 
morning peak hour rush. We used the correlated mobility model 
in [21] to produce the users’ trajectories of morning peak hour 
in which users start from the outer suburbs of the city and then 

move towards the central business district. Different types of 
servers are deployed in the MEC hosts considering energy 
efficiency as in our previous work [22]. Electricity cost is a 
major operational cost for MEC host servers. The mean 
electricity cost is USD 78 per MWh as in [23]. We considered 
the power consumption of servers to vary with server utilization. 

Further, we assumed different link capacities with different 
costs (1 Gbps, USD 0.05/ GB), 400 Mbps, USD 7/GB), (100 
Mbps USD 0.09/GB) as in [23]. Link capacities are allocated 
according to the geographical distances between the MEC hosts. 
The amount of CPU resources distributed over the MEC hosts 
are based on utilitarian resource distribution algorithm as in [21].  

In our previous work, we assumed that the MEC hosts are 
independent [21]. Thus, when a mobile device sends an 
offloading request, if the serving MEC host does not satisfy the 
requirements, the offloading request is rejected, otherwise the 
request is accepted. In this paper, we introduce MEC hosts 
collaboration in which user application can be instantiated in any 
suitable MEC hosts, not necessarily the serving MEC host.   

As mentioned in Section III, Balas-Geoffrion algorithm is 
not efficient in solving MEC host selection problem as shown in 
Fig. 2. Because of the constant negative coefficients, Balas-
Geoffrion selects a random value as the next free variable to 
iterate.   Our modified algorithm outperforms Balas-Geoffrion 
algorithm in number of iterations required to select the optimal 
solution in MEC host selection problem.   

B. Collaboration of MEC hosts 

Figure 3 shows the benefit of MEC hosts collaboration 
method. Fig. 3(a) shows the improvement in the total number of 
accepted requests compared to the independent MEC hosts 
method. All the offloading requests during the middle of the 
morning peak hours are accepted. During the initial stages and 
the later stages of morning peak hours, maximum of 15% and 
2% of the total requests in collaborative method are rejected, 
respectively. The total number of accepted requests is improved 
from 87% in the independent method to 95% in the collaborative 
method. According to our analysis, the link capacity is the 
limiting factor in causing the number of requests rejected in the 
MEC hosts collaboration method, i.e., if we have unlimited link 
capacity, all the requests will be accepted in the MEC hosts 

 
Figure 2 Number of iterations required to find the optimal 

solution for Balas and modified Balas algorithms 
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collaborative method. Fig. 3(b) shows the details of accepted 
requests in the MEC host collaboration method. Self-accepted 
requests of the MEC host are the requests accepted by the MEC 
host that are requested by the devices in the serving coverage 
area of the MEC host. Delegated requests of the MEC host are 
the requests transferred to delegated MEC host by the serving 
MEC host. Delegation may occur due to the resource limitations 
in the serving MEC host or it is cheaper to hosting the user 
application in the delegated MEC host than the serving MEC 
host. 

As we utilized first come first server scheduling at the MEC 
orchestrator, offloading requests are processed in the sequential 
order they are requested. Fig 4 (a) shows the deviations in MEC 
host selections of the first 50 offloading requests at time 100 s, 
i.e. only the variations in both methods in MEC host selections 
are displayed in the figure. Fig 4 (b) shows total cost of 
providing the offloading services for the requests. The cost is 
generally lower in collaboration method than the independent 
method.  

 
Figure 3 (a) Comparison of accepted requests in independent MEC hosts and collaborative MEC hosts methods. (b) Details of accepted 

requests in collaborative MEC hosts method. 
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Fig. 4 (c) shows the deviations in MEC host selections of the 
first 700 offloading requests at time 2,400 s. While all the first 
700 tasks requests in collaborative method are accepted, 
however, 6 offloading requests are rejected in independent 
method as shown in blue line in the figure. Thus, the total 
number of offloading requests are higher in collaborative 
method. Further, number of MEC hosts collaborations increases 
with the number of offloading requests increases. 

Fig. 4(d) shows the total cost of providing the offloading 
services, as the ratio of maximum cost, with the request arrival 
order in both methods. It also shows the number of rejected 
offloading requests in independent method. After the first three 
tasks are being rejected by the independent method, the cost of 
instantiating the application in collaborative method increases 
compared to independent method from the 593th offloading 
request onwards. The cost gap further increases as the number 
of tasks rejected at the independent method increases. This 
implies that when the number of requests accepted in the 
collaborative method increases beyond the margin, the cost of 
providing the offloading services also increases compared to 
independent method. This is the tradeoff between the cost of 
providing the offloading services to the quality of service in 
terms of the number of requests accepted. If the service 
providers want to increase the quality of service beyond the 
margin, then the cost increases. 

V. SUMMARY 

The MEC hosts selection problem in a collaborative MEC 
system is a challenging task for the MEC service providers in 
order to satisfy users’ QoS requirements while minimizing 
service costs. In this work, we formulated the MEC hosts 
selection problem as a special case of binary programming 
problems, which minimizes the total cost incurred by the MEC 
service providers without compromising on QoS requirements. 
We modified Balas-Geoffrion algorithm to solve this problem 
as the additive algorithm minimizes the time complexity. 
Further, it provides near optimal solution, even if the 
calculations stop before all the possible solutions are 
enumerated. Our findings show that our extended algorithm 
outperforms the original Balas-Geoffrion algorithm in the 
number of iterations required to reach the optimal solution in the 
context of special case of binary programming similar to MEC 
host selection problem. Furthermore, we analyzed the tradeoff 
between the increased costs of the collaboration methods to the 
number of tasks rejected in the independent method. 
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