
978-1-7281-3627-1/19/$31.00 ©2019 IEEE

Optimum Selection of Mobile Edge Computing Hosts

Based on Extended Balas-Geoffrion Additive

Algorithm

Shanmuganathan Thananjeyan, Chien Aun Chan, Elaine Wong, and Ampalavanapillai Nirmalathas

Department of Electrical and Electronic Engineering, University of Melbourne, Australia.

 (t.shanmuganathan@student.unimelb.edu.au)

Abstract—Multi-access edge computing (MEC) is emerging as

a solution to serve offloaded tasks from mobile devices that are

computing intensive and have very low latency and high

bandwidth requirements. Since compute resources are limited at

the MEC hosts, collaboration among hosts could enhance the

capabilities of sharing limited resources while minimizing the cost

of such hosts. However, the selection of optimal hosts to instantiate

the user applications is a major challenge when considering the

total service provisioning cost. In this paper, we formulate the

MEC hosts selection problem as a binary integer problem with the

objective to minimize the total cost of providing the offloading

services. We extend the Balas-Geoffrion algorithm to solve the

special case of binary programming problems similar to MEC host

selection problem. The time complexity of the MEC host selection

problem is therefore minimized. We show that our modified

algorithm outperforms Balas-Geoffrion algorithm in the number

of iterations required to reach the optimal solution. Then we

conduct an extensive simulation to show that the overall quality-

of-service of the MEC system is improved by the MEC hosts

collaborations in a limited bandwidth scenario by up to 13%.

However, the tradeoff is an increase in the cost of provisioning the

services.

Keywords- multi-access edge computing; multi-access edge hosts

collaborations; multi-access host selection; Balas additive algorithm

I. INTRODUCTION

Multi-access edge computing (MEC) is the next paradigm of
mobile edge architecture in the fifth generation (5G) mobile
communications to support future mobile applications. New and
emerging applications such as virtual reality, mixed reality
applications require high computing resources and very low
latency. As smartphone devices have constraint in local
computing resources and battery capacity, offloading computing
intensive tasks to MEC system is considered as a promising
solution. MEC was originally proposed as a three-tier
architecture in which MEC hosts that are located between the
cloud datacenters and the end users could provide edge
computing services to the end users [1]. Depending on the
application requirements, offloaded tasks could be either
executed at the MEC host or the cloud data centers. Offloaded
tasks from mobile users with stringent requirements could be
executed in the MEC host and offloading tasks with flexible
requirements could be executed at the cloud datacenters. In this
paper, we focus on applications with stringent requirements in
terms of computation, latency and network bandwidth.

MEC hosts can be deployed at a radio node, or at the edge of
the core network, or at an aggregation point that is between the
radio node and the edge of core network [1]. In order to
maximize the utility of the MEC hosts with limited resources,
collaboration among MEC hosts is proposed in [2].
Consequently, resource allocations within the MEC
infrastructure, which comprises of multiple MEC hosts in
multiple network locations, becomes a major challenge.

When an application in a mobile device sends an offloading
request, this request will be processed by a MEC orchestrator to
decide an appropriate MEC host to accept the request. Then a
“user application” will be instantiated at the selected MEC host
in response to the offloading request of the device application.
However, each user application could have different
requirements. Thus, selecting the ideal MEC hosts to instantiate
the user application by abiding user application’s rules and
requirements such as the required resources, latency,
connectivity and mobility, is a critical challenge for the MEC
service providers. Solving this challenge is known as the MEC
hosts selection problem. Limitations of resources (bandwidth
and computing) and the associated usage costs should be jointly
considered in solving the MEC hosts selection problem in order
to minimize the overall network costs. However, to the best of
our knowledge, consideration of the cost of provisioning the
MEC offloading services in the MEC hosts selection problem
has yet to be fully investigated. Here, we address the key
question of how to minimize the total cost incurred by the MEC
service providers in selecting the ideal MEC hosts to instantiate
the user application in a collaborative environment without
compromising latency requirements. Therefore, the
contributions of this paper are as follows.

• We first formulate the MEC hosts selection problem as a
1-0 integer program (binary programming) problem to
minimize the total cost of provisioning the offloading
services at the MEC host;

• We then extend the use of Balas-Geoffrion additive
algorithm to find the optimal solution for the special case
of binary programming problems similar to the MEC
hosts selection problem. Our modifications are as
follows:

o We modified the strategy to select the free
variable, which has the minimum coefficient
in the objective function.

613Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2020 at 04:26:52 UTC from IEEE Xplore. Restrictions apply.

o We simplify the algorithm described in [3] to
omit the tests that are not relevant to the
context of this special case problems;

• Our proposed algorithm minimizes the computation time
complexity since only the addition and subtraction
operations are employed to find the optimal solution;

• We show that the number of iterations to find the optimal
solution in our extedned algorithm outperforms the
original Balas-Geoffrion algorithm using simulations;

• We then show the tradeoff between the servicing costs
and the number of tasks rejected in the collaborative and
independent methods respectively.

The remaining sections are organized as follows. Section II
discusses the related work in MEC host selection. Section III
discusses the methodology and our modifications on the Balas-
Geoffrion additive algorithm. Then, Section IV discusses the
simulation setup and results that verify the effectiveness of the
optimization and the MEC hosts collaborations. Finally, Section
V concludes the paper with a summary of the insights gained
from our work.

II. RELATED WORK

Application placement algorithms related works can be
found in various domains such as content distribution or cloud
server management. In [4], the authors developed algorithms for
resource allocations in a geographically distributed cloud
environment. The problem is formulated as finding the nodes
with available resources to minimize the latency between the
selected nodes. They proposed an algorithm based on subgraph
selection of the hierarchical network topology inside the
datacenters.

 In [5], the placement problem is studied in the context of
content delivery networks. They design heuristics that replicate

and deploy objects on selected nodes so that the cost is
minimized. The cost is calculated based on the hop count. They
concluded that the greedy approach can result in a performance
that is close to the optimal. A placement method is applied to
solve the problem of distributing workloads to multiple
computing nodes in [6].

Some existing works on application placement and
scheduling in MECs have considered applications with two
components, one running on the cloud (which can either be by
the MEC or core cloud) and the other running on the mobile
device [7] [8]. Another body of existing work usually involves
only two physical computing entities (i.e., the mobile device and
the cloud) [9] [10]. Multi-component applications that can be
deployed across one or multiple levels of MECs and core
cloud(s) have not been considered [11], whereas such
applications widely exist in practice because MEC hosts can be
located at different hierarchical levels of the network [12]. A
task placement algorithm of an edge computing orchestrator is
also proposed in [13] that performs replication and placement of
application components in a telecom-driven application-hosting
infrastructure. Pre-computed shortest paths heuristics algorithm,
which runs in polynomial time, is highlighted as the only
solution that comes very close to optimality in polynomial time.

Collaborative service placement for mobile edge computing
application is considered in [14] with the aim of minimizing the
traffic load caused by service request forwarding. Optimal
placement of virtual machine replica copies to minimize the
average response time is studied in [15] and a hysteric placement
algorithm is proposed. The Nova scheduler of OpenStack [16]
is an existing application placement architecture that selects
suitable computing nodes to initiate the virtual machines.
However, it is explicitly disconnected from the networking
component and does not consider requirements such as latency,
connectivity and mobility that originated from the application
providers [13].

III. METHODOLOGY

A. Computation task offloading

Computation offloading requirements: The MEC
orchestrator is responsible to instantiate the user application in
the most suitable MEC host(s) in the MEC system in response
to the request from the device. The MEC hosts selections should
satisfy the rules and requirements of the request such as
deployment mode, specific hardware requirement, required
resources, latency, connectivity and mobility requirements.
Once the user application is instantiated in the MEC hosts,
device application collaborates with user application to offload
the whole or part of the computation tasks.

Costs: On the other hand, hosting offloading services to the
customers incur costs to the MEC service providers. Computing
resources and network bandwidth resource usages may have
separate cost structures. Thus, from the MEC service provider’s
point of view, the objective is to minimize the total cost incurred
by the MEC system when provisioning the offloading services
while satisfying the service requirements of the MEC
application.

These MEC service dependencies of a user application can
be represented in a graph as shown in the Fig. 1 (a). Vertices of

Figure 1(a) MEC service dependency graph of a user application

(b) network topology graph of the MEC system

614Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2020 at 04:26:52 UTC from IEEE Xplore. Restrictions apply.

the graph represent the MEC services and the edges represent
the task offloading requests within the services. Each MEC
service request from the user application can be considered as a
computational task offloading request from the user application.
Computation intensive tasks (𝑇) can be represented by the size

of the offloading data (qN), task deadline (𝜏𝑀𝐴𝑋) and the number
of CPU cycles required to complete the task (𝑞𝐶), i.e., 𝑇 ≜
(𝑞𝑁, 𝜏𝑀𝐴𝑋 , 𝑞𝐶).

On the other hand, MEC hosts deployment can be
represented in MEC network topology graph as shown in Fig.
1(b). Vertices of the graph represent the MEC hosts and the
MEC host capacity in terms of compute resources. Edge of the
graph indicates the network capacity in terms of bandwidth
resources. A complete topology graph of the MEC system can
be generated in which there is a direct communication link
between all pairs of MEC hosts. It should be noted that both
compute and bandwidth resource usages are associated with
different costs in the complete graph.

B. Minimizing the total cost in MEC host selection

Let MEC hosts in the MEC system be represented in a set
𝐻 = {1,2, … ℎ, … }. Let 𝐼 (𝐼 ⊆ 𝐻) be the filtered subset of the
MEC hosts that could support the rules and requirements of the
MEC applications such as special hardware requirement.
Different MEC services might be required by the user
application. Let 𝐽(𝐽 ⊆ 𝐻) be the filtered subset of MEC hosts in

which the required services are hosted. Let 𝑥𝑖,𝑗
𝑁 be the maximum

amount of network bandwidth that can be allocated to the user
application during the data transmission to be used between the
MEC hosts 𝑖 and 𝑗. This network bandwidth allocation is based
on the network resource allocation policy of the MEC service
providers and the available bandwidth. For instance, a maximum
of 50% of the remaining bandwidth can be allocated to the
incoming resource request. Thus, the minimum network latency

is given by 𝜏𝑖,𝑗
𝑁 =

𝑞𝑖,𝑗
𝑁

𝑥𝑖,𝑗
𝑁 , where 𝑞𝑖,𝑗

𝑁 is the data that needs to be

transmitted between the MEC hosts. Further, the data

transmission cost is 𝑒𝑖,𝑗
𝑁 ∗ 𝑞𝑖,𝑗

𝑁 , where 𝑒𝑖,𝑗
𝑁 is the cost of

transferring a unit of data between MEC hosts.

Let 𝑥𝑖
𝐶 be the maximum computing resource that can be

allocated at the MEC host during the task execution. Noted that
the computing resource allocation also depends on the MEC
service provider’s resource allocation policy and the resource
availability at the MEC host with limited resources. Thus, the

minimum computing latency in the servicing MEC host is 𝜏𝑖
𝐶 =

𝑞𝑖

𝐶

𝑥𝑖
𝐶 , where 𝑞𝑖

𝐶 is the required computing resources. The

computing cost is thus 𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 , where 𝑒𝑖
𝐶 is the unit allocation

cost of the computing resources at MEC host i. The total service
cost is the sum of the data transmission costs and computing

costs, i.e., 𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 + ∑ (𝑒𝑖,𝑗
𝑁 ∗ 𝑞𝑖,𝑗

𝑁 + 𝑒𝑗
𝐶 ∗ 𝑥𝑗

𝐶)𝑗∈𝐽 . We assume

each service are independent and can be consumed in parallel.

The objective of the MEC service providers is to minimize
the total cost incurred by provisioning the offloading services
while maintaining the quality-of-service (QoS):

 min { ∑ 𝛼𝑖 (𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 + ∑ (𝑒𝑖,𝑗
𝑁 ∗ 𝑞𝑖,𝑗

𝑁 + 𝑒𝑗
𝐶 ∗ 𝑥𝑗

𝐶
𝑗∈𝐽)) 𝑖∈𝐼 } ()

Subject to;

 𝛼𝑖(𝜏𝑖
𝐶 + max{𝜏𝑗

𝐶 + 𝜏𝑖,𝑗
𝑁 }) ≤ 𝜏𝑀𝐴𝑋 ∀ 𝑖 ∈ 𝐼, ∀ j ∈ J ()

 ∑ 𝛼𝑖𝑖∈𝐼 ≥ 𝑚 and 𝛼𝑖 ∈ {0,1} ()

where 𝑒𝑖
𝐶 ≥ 0 , 𝑒𝑖,𝑗

𝑁 ≥ 0 𝑒𝑗
𝐶 ≥ 0, 𝑥𝑖

𝐶 ≥ 0 , qi,j
N ≥ 0, 𝑥𝑗

𝐶 ≥ 0

and 𝛼𝑖 is a binary variable. If 𝛼𝑖 = 1, the MEC host is selected
for instantiating the user application, otherwise it is not selected.
In addition to the latency constraints in Eq.(2), we have another
constraint in Eq. (3): at least 𝑚 MEC hosts shall be selected to
instantiate the user application as per the deployment mode
requirement of the application. Eq. (3) can be written as

 − ∑ 𝛼𝑖𝑖∈𝐼 ≤ − 𝑚 and 𝛼𝑖 ∈ {0,1} ()

The optimal (feasible) solution needs to satisfy Eqs. (1) (2)
and (4). We can represent the above minimization problem in
the standard form as follows:

 min{ ∑ 𝛼𝑖 ∗ 𝑧𝑖 𝑖∈𝐼 } ()

Subject to;

 ∑ 𝛼𝑖 ∗ 𝑦𝑖,𝑘 + 𝛽𝑘 = 𝛾𝑘 𝑘 = 1,2 ()

where 𝑧𝑖 = 𝑒𝑖
𝐶 ∗ 𝑥𝑖

𝐶 + ∑ (𝑒𝑖,𝑗
𝑁 ∗ 𝑞𝑖,𝑗

𝑁 + 𝑒𝑗
𝐶 ∗ 𝑥𝑗

𝐶)𝑗∈𝐽 and

slack variable of the constraint k is 𝛽𝑘(≥ 0). Objective cost
function is derived using cost functions of network and
computing resources. Similarly, latencies are derived from the
resource limitations in the network and computing resources. As
all the cost components are non-negative, the total cost is also
non-negative (𝑧𝑖 ≥ 0).

We consider Eqs. (1), (2) and (4) as MEC hosts selection
problem. The problem is dual feasible as 𝑧𝑖 ≥ 0. Further, by
analyzing the problem, we have only one constraint with all
nonpositive constant (-1) coefficients as in Eq. (4) and other with
all nonnegative coefficient as in Eq. (2). In other words, it is a
minimization problem with an upper bound constraints with all
positive coefficients and all negative constant coefficients.

C. Balas-Geoffrion additive algorithm

It is important to note that the solution of MEC hosts
selection problem will be a 0-1 integer (binary) programming.
Binary programming is NP-complete and is one of Karp's 21
NP-complete problems [17]. Techniques available for solving
the 0-1 integer programming problem include algorithms of
Glass, Balas, Glover, Lawler and Bell, Geoffrion, Lemke and
Spielberg etc. as summarized in [3]. These additive algorithms
are enumerative and developed for solving 0-1 binary
programming problems. The general idea of additive algorithm
is to enumerate though some of all 2n possible solutions of a
problem explicitly to find the best solution.

Bala’s additive algorithm [18] with some modifications can
be applied to solve the MEC host selection problem as it is dual
feasible. The approach of Bala’s algorithm that makes it
efficient is that only some solutions are selected for explicit
enumeration. Geoffrion reformulated the additive algorithm by

615Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2020 at 04:26:52 UTC from IEEE Xplore. Restrictions apply.

reducing the spatial complexity (storage) to improve the
efficiency of the Balas algorithm [19]. The only operations
required under the algorithm are additions and subtractions.

The computation complexity of addition and subtractions is
ϴ(n) whereas the computational complexity of multiplication
and division is ϴ(n2). This shows the advantage of applying
additive algorithm in terms of computational complexity in
solving the MEC selection problem. Another advantage of the
algorithm is that it provides near optimal solution, even if the
calculations stop before all the possible solutions are
enumerated. [20].

D. Extended Balas-Geoffrion additive algorithm

Even though, Balas-Geoffrion algorithm can be applied to a
general binary programming problem, it is not efficient in
solving binary problems with upper bound constraints with all
positive coefficients and all negative constant coefficients. We
modified the strategy of selecting free variables and
fathoming tests of Balas-Geoffrion algorithm to improve the
efficiency of the algorithm for the above-mentioned special
case of binary programming problems. Bala’s strategy was to
choose the free variables, which would then result in the least
infeasibility. As we have an upper bound constraint with all
negative constant coefficients, least infeasibility calculations
will end up listing all the free variables and have to select one
free variable randomly. Thus, we modified the strategy to select
the free variables, which have the minimum coefficient in the
objective function in order to guarantee the optimality of the
problem.

Balas developed four tests as described in [3] to validate
whether the given partial solution is fathomed or not. Based on
the context of our problem, we omit Tests 1 and 3 in [3]. Because
all the coefficients in each constraint are either positive or
negative, there is no nonnegative coefficient for a free variable
in all the constraints in Test 1 and hence should be omitted.
Similarly, in Test 3, if the slack variable of a partial solution is
negative, it should be from one of the upper bound constraints
with all positive coefficients. Thus, there is no way to improve
it by converting it to be positive by assigning 1 to any free
variables in that constraint.

If the algorithm terminates with the feasible solutions, then
the computation offloading request will be accepted, otherwise,
the offloading request will be rejected. We define the total
requests accepted in the MEC system as a metric of performance
measurement to compare the collaborative MEC hosts method
and non-collaborative (independent) MEC hosts method.

IV. SIMULATION AND RESULTS

A. Simulation set up

In order to evaluate the performance of MEC hosts
collaborations, we simulated the MEC hosts selection problem
involving an urban area of 2 km × 2 km served by a mobile
wireless network in which radio nodes are spaced 200 m apart.
We assumed a total of 1,000 users, each with a mobile device
moving in vehicles for an hour, i.e., 3,600 seconds during the
morning peak hour rush. We used the correlated mobility model
in [21] to produce the users’ trajectories of morning peak hour
in which users start from the outer suburbs of the city and then

move towards the central business district. Different types of
servers are deployed in the MEC hosts considering energy
efficiency as in our previous work [22]. Electricity cost is a
major operational cost for MEC host servers. The mean
electricity cost is USD 78 per MWh as in [23]. We considered
the power consumption of servers to vary with server utilization.

Further, we assumed different link capacities with different
costs (1 Gbps, USD 0.05/ GB), 400 Mbps, USD 7/GB), (100
Mbps USD 0.09/GB) as in [23]. Link capacities are allocated
according to the geographical distances between the MEC hosts.
The amount of CPU resources distributed over the MEC hosts
are based on utilitarian resource distribution algorithm as in [21].

In our previous work, we assumed that the MEC hosts are
independent [21]. Thus, when a mobile device sends an
offloading request, if the serving MEC host does not satisfy the
requirements, the offloading request is rejected, otherwise the
request is accepted. In this paper, we introduce MEC hosts
collaboration in which user application can be instantiated in any
suitable MEC hosts, not necessarily the serving MEC host.

As mentioned in Section III, Balas-Geoffrion algorithm is
not efficient in solving MEC host selection problem as shown in
Fig. 2. Because of the constant negative coefficients, Balas-
Geoffrion selects a random value as the next free variable to
iterate. Our modified algorithm outperforms Balas-Geoffrion
algorithm in number of iterations required to select the optimal
solution in MEC host selection problem.

B. Collaboration of MEC hosts

Figure 3 shows the benefit of MEC hosts collaboration
method. Fig. 3(a) shows the improvement in the total number of
accepted requests compared to the independent MEC hosts
method. All the offloading requests during the middle of the
morning peak hours are accepted. During the initial stages and
the later stages of morning peak hours, maximum of 15% and
2% of the total requests in collaborative method are rejected,
respectively. The total number of accepted requests is improved
from 87% in the independent method to 95% in the collaborative
method. According to our analysis, the link capacity is the
limiting factor in causing the number of requests rejected in the
MEC hosts collaboration method, i.e., if we have unlimited link
capacity, all the requests will be accepted in the MEC hosts

Figure 2 Number of iterations required to find the optimal

solution for Balas and modified Balas algorithms

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
it

er
at

io
n

s

Offloading requests

Extended Balas

616Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2020 at 04:26:52 UTC from IEEE Xplore. Restrictions apply.

collaborative method. Fig. 3(b) shows the details of accepted
requests in the MEC host collaboration method. Self-accepted
requests of the MEC host are the requests accepted by the MEC
host that are requested by the devices in the serving coverage
area of the MEC host. Delegated requests of the MEC host are
the requests transferred to delegated MEC host by the serving
MEC host. Delegation may occur due to the resource limitations
in the serving MEC host or it is cheaper to hosting the user
application in the delegated MEC host than the serving MEC
host.

As we utilized first come first server scheduling at the MEC
orchestrator, offloading requests are processed in the sequential
order they are requested. Fig 4 (a) shows the deviations in MEC
host selections of the first 50 offloading requests at time 100 s,
i.e. only the variations in both methods in MEC host selections
are displayed in the figure. Fig 4 (b) shows total cost of
providing the offloading services for the requests. The cost is
generally lower in collaboration method than the independent
method.

Figure 3 (a) Comparison of accepted requests in independent MEC hosts and collaborative MEC hosts methods. (b) Details of accepted

requests in collaborative MEC hosts method.

Time (s)

N
u

m
b
er

 o
f

ac
ce

p
te

d

re

q
u

es
ts

N
u

m
b
er

 o
f

ac
ce

p
te

d

re

q
u

es
ts

Time (s)

600

650

700

750

800

850

900

950

1000

Independent MEC hosts

Collaborative MEC hosts

0

200

400

600

800

1000

Total accepted requests

Self-accepted requests

Delegated requests

(a) (b)

Figure 4(a) selected MEC hosts (b) total costs; for first fifty offloading requests at time 100 s. (c) selected MEC hosts (d) total costs; for

first seven hundred offloading requests at time 2400 s.

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

Rejected in independent method Accepted in independant method

Accepted in collaboration method

0

20

40

60

80

100

120

0 10 20 30 40 50

Rejected in independant method Accepted in collaborative method

Accepted in independant method

0

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

Rejected tasks count in independent method Total cost in independent method

Total cost in collaborative method

0

1

2

3

4

5

6

7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 100 200 300 400 500 600 700

Rejected tasks count in independent method Total cost in independent method

Total cost in collaborative method

(a) (b)Offloading request order Offloading request order

Offloading request order Offloading request order(c) (d)

T
o

ta
l
c
o

st
 a

s
 r

at
io

 o
f

th
e

m
ax

im
u
m

 c
o

st

T
o

ta
l
c
o

st
 a

s
 r

at
io

 o
f

th
e

m
ax

im
u
m

 c
o

st

S
el

ec
te

d
 M

E
C

 h
o

st

S
el

ec
te

d
 M

E
C

 h
o

st

N
u
m

b
er

 o
f

re
je

c
te

d
 t

as
k
s

N
u
m

b
er

 o
f

re
je

c
te

d
 t

as
k
s

MEC hosts selections for first fifty offloading requests at time 100s

MEC hosts selections for first seven hundred offloading requests at time 2400s

617Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2020 at 04:26:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4 (c) shows the deviations in MEC host selections of the
first 700 offloading requests at time 2,400 s. While all the first
700 tasks requests in collaborative method are accepted,
however, 6 offloading requests are rejected in independent
method as shown in blue line in the figure. Thus, the total
number of offloading requests are higher in collaborative
method. Further, number of MEC hosts collaborations increases
with the number of offloading requests increases.

Fig. 4(d) shows the total cost of providing the offloading
services, as the ratio of maximum cost, with the request arrival
order in both methods. It also shows the number of rejected
offloading requests in independent method. After the first three
tasks are being rejected by the independent method, the cost of
instantiating the application in collaborative method increases
compared to independent method from the 593th offloading
request onwards. The cost gap further increases as the number
of tasks rejected at the independent method increases. This
implies that when the number of requests accepted in the
collaborative method increases beyond the margin, the cost of
providing the offloading services also increases compared to
independent method. This is the tradeoff between the cost of
providing the offloading services to the quality of service in
terms of the number of requests accepted. If the service
providers want to increase the quality of service beyond the
margin, then the cost increases.

V. SUMMARY

The MEC hosts selection problem in a collaborative MEC
system is a challenging task for the MEC service providers in
order to satisfy users’ QoS requirements while minimizing
service costs. In this work, we formulated the MEC hosts
selection problem as a special case of binary programming
problems, which minimizes the total cost incurred by the MEC
service providers without compromising on QoS requirements.
We modified Balas-Geoffrion algorithm to solve this problem
as the additive algorithm minimizes the time complexity.
Further, it provides near optimal solution, even if the
calculations stop before all the possible solutions are
enumerated. Our findings show that our extended algorithm
outperforms the original Balas-Geoffrion algorithm in the
number of iterations required to reach the optimal solution in the
context of special case of binary programming similar to MEC
host selection problem. Furthermore, we analyzed the tradeoff
between the increased costs of the collaboration methods to the
number of tasks rejected in the independent method.

REFERENCES

[1] ETSI, “Mobile edge computing (MEC): Technical requirements.” ETSI
Industry Specification Group (ISG), Mar-2016.

[2] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios,
and Challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54–
61, Apr. 2017.

[3] M. Rajib Arefin, T. Hossain, and M. Ainul Islam, “Additive Algorithm
for Solving 0-1 Integer Linear Fractional Programming Problem,” Dhaka
University Journal of Science, vol. 61, Nov. 2013.

[4] M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in 2012 Proceedings IEEE INFOCOM, 2012, pp.
963–971.

[5] J. Kangasharju, J. Roberts, and K. W. Ross, “Object replication strategies
in content distribution networks,” Computer Communications, vol. 25,
no. 4, pp. 376–383, Mar. 2002.

[6] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, 2016, pp. 1–9.

[7] T. Taleb and A. Ksentini, “An analytical model for Follow Me Cloud,” in
2013 IEEE Global Communications Conference (GLOBECOM), 2013,
pp. 1291–1296.

[8] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205–228, Sep. 2015.

[9] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal Joint
Scheduling and Cloud Offloading for Mobile Applications,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2018.

[10] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT), 2016, pp. 1451–
1455.

[11] S. Wang, M. Zafer, and K. K. Leung, “Online Placement of Multi-
Component Applications in Edge Computing Environments,” IEEE
Access, vol. 5, pp. 2514–2533, 2017.

[12] “Mobile-edge Computing - Introductory Technical White Paper V1 18-
09-14 | Cloud Computing | Computer Network,” Scribd. [Online].
Available: https://www.scribd.com/document/281496744/Mobile-edge-
Computing-Introductory-Technical-White-Paper-V1-18-09-14.
[Accessed: 05-Oct-2017].

[13] V. Karagiannis and A. Papageorgiou, “Network-integrated edge
computing orchestrator for application placement,” in 2017 13th
International Conference on Network and Service Management (CNSM),
2017, pp. 1–5.

[14] N. Yu, Q. Xie, Q. Wang, H. Du, H. Huang, and X. Jia, “Collaborative
Service Placement for Mobile Edge Computing Applications,” in 2018
IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–
6.

[15] L. Zhao and J. Liu, “Optimal Placement of Virtual Machines for
Supporting Multiple Applications in Mobile Edge Networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6533–6545, Jul.
2018.

[16] “OpenStack Docs: Filter Scheduler.” [Online]. Available:
https://docs.openstack.org/nova/latest/user/filter-scheduler.html.
[Accessed: 15-Jan-2019].

[17] R. M. Karp, “Reducibility among Combinatorial Problems,” MA:
Springer US, 1972, pp. 85–103.

[18] E. Balas, F. Glover, and S. Zionts, “An Additive Algorithm for Solving
Linear Programs with Zero-One Variables,” Operations Research, vol.
13, no. 4, pp. 517–549, 1965.

[19] A. Geoffrion, “Integer Programming by Implicit Enumeration and Balas’
Method,” SIAM Rev., vol. 9, no. 2, pp. 178–190, Apr. 1967.

[20] J. ter Wengel, “Allocations of Industries Given Generalized
Distributional Constraints,” in Allocation of Industry in the Andean
Common Market, J. ter Wengel, Ed. Dordrecht: Springer Netherlands,
1980, pp. 109–131.

[21] S. Thananjeyan, C. A. Chan, E. Wong, and A. Nirmalathas, “Deployment
and Resource Distribution of Mobile Edge Hosts Based on Correlated
User Mobility,” IEEE Access, vol. 7, pp. 148–159, 2019.

[22] Thananjeyan, S., Chan, C.A., Wong, E., and Nirmalathas, A., “Energy-
Efficient Mobile Edge Hosts for Mobile Edge Computing System,”
presented at the 2018 International Conference on Information and
Automation for Sustainability (ICIAfS), Colombo, 2018.

[23] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed Online
Resource Allocation in Multi-Tier Distributed Cloud Networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 2556–2570,
Aug. 2017.

618Authorized licensed use limited to: University of Melbourne. Downloaded on December 17,2020 at 04:26:52 UTC from IEEE Xplore. Restrictions apply.

