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Most performance prediction models for asphalt pavements are either based on laboratory data or numerical distress
data collected from field surveys. However, these models do not fully reflect the true performance of pavements in
different traffic and environmental conditions. In the study reported in this paper, a multi-input unified prediction
model based on an artificial neural network was developed by using a mixture of numerical and categorical features
for in-service pavement test sections in the USA. Pavement age, cracking length and area, cumulative traffic loading,
two functional classes of roads, four climatic zones and maintenance effects were considered as input variables while
changes in the pavement condition index (PCI) were determined as the output. The developed model was found to be
efficient in terms of processing time and accuracy in dealing with the complexity and non-linearity of multiple input
parameters. The results showed that the model provided a high correlation between observed and predicted
deterioration at the training stage. The testing and validation results also yielded high accuracy in predicting the PCI
and could be combined with a pavement management system to plan timely and accurate maintenance strategies.

Notation
f (k) tan sigmoid transfer function
Ii input i
n number of inputs
Wj0 bias
Wji weight
x weighted sum
y output

1. Introduction
A pavement management system is a tool that assists highway
authorities in decision making procedures to maintain pave-
ments in a serviceable and functional condition throughout
their life. Building an effective and successful pavement
management system requires the development of an accurate
pavement deterioration prediction model for programming
and prioritising preservation activities and allocating resources
throughout the pavement’s service life (Alharbi, 2018;
Bianchini and Bandini, 2010). Improvement in the accuracy of
the prediction model is vital for estimating desirable preser-
vation activities and resources allocation, and makes a substan-
tial difference to expenditure on pavement treatments
(Bianchini and Bandini, 2010; Pan et al., 2011; Yang et al.,
2002).

The perfect form of a deterioration prediction model is to
find a causal relationship between an index of pavement
performance and explanatory factors that influence pavement
conditions. There are several requirements that should be
considered in developing a reliable deterioration prediction

model; they are long-term historical data of in-service
pavements comprising all the variables affecting pavement
performance, an acceptable model form considering non-
linearity and interaction, and criteria to estimate model
accuracy (Darter, 1980). In addition, the variables affecting
pavement deterioration (e.g. traffic, distress quantity, pavement
age, maintenance effects, environment, pavement construction
and materials) should be combined and considered when
modelling deterioration. These variables have numerical
features and categorical features.

Highways agencies have applied several techniques to develop
deterioration prediction models. Deterministic techniques have
been used to predict a quantity of specific change in pavement
life or a quantity of specific distress type (Abaza, 2004; Dalla
Rosa et al., 2017; Gulfam-E-Jannat et al., 2016; Jain et al.,
2005; Khraibani et al., 2012; Luo, 2013; Mahmood et al.,
2019; Ningyuan et al., 2001; Obaidat and Al-Kheder, 2006;
Prozzi and Madanat, 2004). Moreover, probabilistic methods
have been applied to predict distributions of condition states or
expected pavement lifetimes (Abaza, 2016a, 2016b; Anyala
et al., 2012; Bandara and Gunaratne, 2001; Hong and Prozzi,
2006; Hong and Wang, 2003; Jiménez and Mrawira, 2009;
Lethanh and Adey, 2013; Park et al., 2008). However, these
models have limited abilities to overcome the degree of uncer-
tainty in judgements, the non-linearity of distress progression
and dealing with a large volume of distress data collected from
sensor-based traffic speed investigations. To address these
issues, artificial intelligence methods have been applied to
develop prediction models of pavement deterioration
(Bianchini and Bandini, 2010; Mahmood et al., 2019).
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Several studies have also applied various artificial neural
network (ANN) or fuzzy logic or hybrid (i.e. neuro-fuzzy)
techniques to predict changes in pavement roughness, distress
progression or pavement condition (Alharbi, 2018; Attoh-Okine,
1994, 1999; Bianchini and Bandini, 2010; Heidari et al., 2018;
Lin et al., 2003; Lou et al., 2001; Mazari and Rodriguez, 2016;
Okuda et al., 2018; Owusu-Ababio, 1998; Roberts and
Attoh-Okine, 1998; Terzi, 2007; Thube, 2012; Yao et al., 2019).

2. Research objectives
As already noted, most prediction models estimate either the
progression of a single distress type or multiple distress types.
Only a few studies related to the prediction of overall pavement
deterioration by using numerical distress data can be found in
the literature. No previous study has considered categorical fea-
tures such as functional class and climatic conditions. Therefore,
the primary objective of this work was to develop a unified ANN
deterioration prediction model for a flexible pavement using road
category (functional class and traffic loading), climatic con-
dition, pavement construction, maintenance records and numeri-
cal distress data. The aim was that the developed model will
predict overall pavement conditions by evaluating changes in the
pavement condition index (PCI) over the service life.

3. Database
The long-term pavement performance (LTPP) database is a
public and online database established as part of the Strategic
Highway Research Program in 1987. The database includes
data on pavement condition collected from manual and/or
automated inspections of pavement distress for each segment.
It is a comprehensive programme that includes distresses (e.g.
cracking, pothole, patching and rutting), serviceability require-
ments (e.g. skid resistance, roughness, texture and ride quality)
and structural data such as service life (FHWA, 2012).

Furthermore, to study behaviour under real-life traffic loading,
in-service pavement sections are built and investigated. The in-
service pavement sections are classified into two main groups:
general pavement studies and specific pavement studies. The
general pavement studies comprise a study series on about 800
in-service test sections in all states of the USA and Canada,
whereas the specific pavement studies consider specific
parameters relating to new construction, treatment and rehabili-
tation activities. Seven modules – inventory, monitoring, traffic,
materials testing, climatic, preservation and rehabilitation – are
the main contents of the LTPP database (FHWA, 2012).
General pavement studies data, including historical data of pave-
ment conditions, maintenance and rehabilitation, traffic, climatic
effect, design and construction, were considered in this study.

4. Methodology

4.1 ANNs
ANNs are a computational approach devised to mimic the
technique in which the human brain processes data. ANNs

collect their experience by identifying relationships and forms
in the information. They learn through knowledge with proper
learning exemplars just as humans do, not from programming.
They can provide an effective tool for solving complex pro-
blems and addressing non-linearity (Agatonovic-Kustrin and
Beresford, 2000; Attoh-Okine, 1999; Eldin and Senouci, 1995).

ANNs are composed of many individual elements, called
artificial neurons, connected with weights to create a neural
structure. They are also recognised as processing elements as they
process data. Each processing element includes weighted inputs,
a single output and a transfer function. A processing element is
an equation that makes a balance between the inputs and the
output (Agatonovic-Kustrin and Beresford, 2000). A model of a
neuron is shown in Figure 1. The strength of each input (I0, I1,
I2, I3, …, In) to the neuron is decided by the weights (Wj0, Wj1,
Wj2, Wj3, …, Wjn), where weight Wj0 is called bias, which helps
the activation function to reach a correct fit of inputs with the
output (y); the subscript j denotes the column number of the
input vector (Jang et al., 1997). The inputs are multiplied with
the respective weights and the addition of those values, called the
weighted sum, is found by the summation function.

The weighted sum is then passed to a suitable activation func-
tion that calculates the output value of a neuron in a hidden
layer. The activation function used within the Levenberg–
Marquardt optimisation algorithm, which was employed in
this work, is the hyperbolic tangent sigmoid (tan sigmoid)
transfer function. The model is composed of inputs, weights,
bias and a neuron, and the output is referred to as the percep-
tron. A feed-forward neural network (NN) formed by multiple
layers of perceptrons is called a multi-layer perceptron (MLP).
Figure 2 depicts the MLP, which has several layers; that is,
several neurons along a vertical column. The number of
neurons in the input layer is fixed by the number of input par-
ameters present in the data. Similarly, the number of neurons
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f (x)

Output
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Figure 1. Model of a neuron
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in the output layer is decided by the number of outputs
required. For a regression task, as in the present work, a single
neuron in the output layer suffices (Jang et al., 1997).

Figure 2 shows that there are several hidden layers, whose con-
figuration is usually determined in a trial-and-error fashion.
Furthermore, it should be noted that the neurons in any given
layer are connected to every neuron in the previous and next
layers. Hence, a network such as that shown in Figure 2 is also
known as a fully connected network. The following equations
show how the output (y) is produced at the output of a neuron
shown in Figure 2 for a number of inputs (I1, I2, I3, …, In).

The weighted sum x is given by

1: x ¼
Xn

i¼0

WjiIi

where Wji is the weight, Ii is the input I and n is the number of
inputs.

The tan sigmoid transfer function is given by

2: f ðkÞ ¼ 2
1þ e�2k � 1

Equation 1 can be written as

3: x ¼
Xn

i¼1

WjiIi þWj0I0

where Wj0 ¼ �b and I0 ¼ 1.

Hence the weighted sum x is

4: x ¼
Xn

i¼1

WjiIi � b

Plugging x into Equation 2 gives

5: f ðxÞ ¼ 2
1þ e�2x � 1

Therefore, the output y is given by

6: y ¼ 2
1þ e�2x � 1

Connections Neurons

Pavement age

Cracking area

Cracking length

Maintenance effect

Cumulative Esal

Collector roads

Arterial roads

Wet freeze zone

Dry freeze zone

Wet non-freeze
zone

Dry non-freeze
zone

Input layer
Hidden layer 1;

number of
neurons: 20

Hidden layer 2;
number of

neurons: 40

Hidden layer 3;
number of

neurons: 30
Output
layer
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Figure 2. Architecture of the NN for the pavement deterioration model. Esal, equivalent single-axle load
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In the development of ANN models, a generalisation ability
should be included. Generalisation is known as the ability of a
NN to recognise characteristics that are common to a sample
of existing data and keep them in the network. The capability
of retention is linked to the nodal weights. The weights
and biases need to be tuned during training of the model,
either in a supervised manner, where a human guides the
network with inputs with labelled data and the expected
outputs, or in an unsupervised manner, where the network is
expected to perform the task on its own. Then, the NN effi-
ciently employs these characteristics to perform forecasting for
formerly unseen examples. The objective of training and
testing is to estimate the architecture of the NN with the best
generalisation ability.

Usually, a NN with only a few hidden neurons is unable to be
trained effectively from a training data set, while a NN with a
large number of hidden neurons will permit the network to
learn the training set rather than generalising the attained
experience for hidden patterns (Lou et al., 2001). An effective
ANN is decided by variables of the network called hyperpara-
meters – these are the number of hidden neurons, the number
of hidden layers, the rate at which the weights are updated
(called the learning rate), how much data are fed into the
network to learn at a time (referred to as the batch size) and
the number of times the whole data set is shown to the
network to learn (called epochs).

4.2 Input parameters
In developing a prediction model for pavement deterioration,
the existence and use of the most influential parameters affect-
ing pavement deterioration were considered. These parameters
are pavement age, pavement design and construction, traffic
loading, environmental effect, and the effect of maintenance
and rehabilitation (Al-Mansour et al., 1994; Fwa, 2006). These
factors are now briefly described in turn.

Due to the ageing process, adverse climatic impacts and their
interaction with traffic on pavement conditions accelerate over
time. Pavement age should be estimated from the date of con-
struction or the date of the most recent rehabilitation (Fwa,
2006).

Pavement design and construction have the most substantial
effects on the performance of a pavement. In general, pave-
ment design and construction comprises two key parts – the
layer thickness of the asphalt and the type of pavement
(e.g. flexible and rigid) (Fwa, 2006). The design and construc-
tion of high-capacity arterial roads and low- to moderate-
capacity collector roads are different because arterial roads
have the highest level of service at the maximum speed for the
longest mileage. Therefore, in this study, both arterial and col-
lector roads were selected as inputs of the prediction model to
consider the effects of pavement design and construction on
deterioration.

Moreover, traffic load repetition, axle load type, volume and
vehicle type also affect pavement deterioration. These factors
are combined to be expressed as an equivalent single-axle load
(Esal) in prediction models (Al-Mansour et al., 1994; Fwa,
2006).

Environmental variation has a significant effect on pavement
deterioration. Temperature, which is a climatic effect, causes
cracking in age-hardened brittle asphalt surfaces in the cold
season and rutting in pavement surfacing under traffic loads in
the hot season. Furthermore, freeze–thaw cycles and levels of
precipitation also have an impact on pavement performance
(Al-Mansour et al., 1994; Fwa, 2006).

Finally, maintenance actions are performed to minimise the
deterioration level of a pavement structure or are applied in an
emergency to preserve the pavement structure at an acceptable
level. Occasionally, when pavement sections comprise several
types of distress, it may be economical to rehabilitate either by
inlay, overlay or reconstruction of the pavement rather than
preservative treatment. Therefore, both inlay and overlay
actions (thickness) were used as input parameters.

4.3 Model development
To develop the pavement deterioration ANN model, pavement
condition data were collected from the online LTPP database
(FHWA, 2012). Table 1 shows the total number of sections and
data samples that were considered to develop the deterioration
prediction model. As inputs, the following 11 explanatory vari-
ables were considered – pavement age, cracking area, cracking
length, cumulative Esal, maintenance effect (inlay and/or
overlay thickness), four climatic zones (dry freeze, dry non-
freeze, wet freeze, wet non-freeze) and two functional classes
(collector and arterial). The PCI is an indicator, ranging from
0 to 100, used to evaluate pavement deterioration based on
three main factors – type of distress, severity of distress and
distress. The PCI was used utilised as the dependent variable.
Table 2 shows an example of data samples, including inputs
and output of the pavement-deterioration-based ANN model.
The categorical variables belonging to the four climatic zones
and the two functional classes were converted into binary
values using the ‘one-hot encoding’ method, which checks
whether the input belongs to one of the six categorical vari-
ables defined.

An example of hot encoding performed for three categorical
variables (A, B and C ) is shown in Table 3. The correlation
between the input parameters is depicted in Table 4, which is

Table 1. Summary of total number of pavement sections and
data samples

Sections 59
Samples 838
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the correlation matrix. It is clear that no two pairs of inputs
had a perfect linear relationship, other than the variables arter-
ial roads and collector roads. The correlation coefficient
between arterial roads and collector roads was −1 because
there were only two types of roads available and both types
were taken into account and hot encoded as 1 or 0. Further,
the pairs of inputs wet freeze–wet non-freeze, wet freeze–dry
freeze, wet freeze–dry non-freeze, wet non-freeze–dry freeze
and dry-freeze–dry non-freeze showed a moderate negative
linear relationship with values of −0.28051, −0.55743, −0.267,
−0.34186 and −0.3254, respectively. Here too, there are four
variables with hot encoding, which can be covered by three
independent variables alone. The rest of the correlation coeffi-
cients occupying the other off-diagonal elements of the matrix
were very small numbers, thus showing a weak linear relation-
ship between the input pairs.

The model development can be summarised as follows.

(a) Selection of the explanatory variables (age, cracking area
and length, cumulative Esal, maintenance effect, climatic
zones and functional classes).

(b) For each pavement section, collection of historical
condition data and also all the required data for step (a)
from the online LTPP database.

(c) For each section, calculation of the PCI for each survey
year using the Paver system.

(d ) Use of the one-hot encoding method to convert the
categorical variables (four climatic zones and two
functional classes) into binary values.

(e) Use of the ANN method to develop a deterioration
prediction model using Matlab software.

Modelling pavement deterioration considering 11 input factors
that affect pavement deterioration is a complex problem. In
addition, there are non-linear relationships between the depen-
dent and independent variables. Therefore, the ANN technique
was used to address these issues and find all potential inter-
actions without complicated equations. Figure 2 shows the
ANN architecture of the pavement deterioration model.

The ANN used in this study is known as a shallow network,
composed of MLPs of around two or three hidden layers in the
context of supervised learning. The weights and biases are initi-
alised randomly and tuned using the backpropagation method,
which first calculates the error function from the decision of the
output layer in the feed-forward path and the target valuesTa
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Check A B C

Is A? 1 0 0
Is B? 0 1 0
Is C? 0 0 1
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provided. The calculated error is then sent backwards through
the MLPs. The weights and biases are adjusted towards
minimising the error at the output layer and the feed-forward
path action is activated using the adjusted weights and biases.
This forward and backward operation is continued until the
minimum error value possible is achieved.

To train the ANN, the Levenberg–Marquardt optimisation
algorithm was chosen to implement a feed-forward NN since
it is an effective algorithm for training a feed-forward NN
(Agatonovic-Kustrin and Beresford, 2000). This algorithm uti-
lises the Jacobian for calculations, which imposes a condition
for the mean squared error (MSE) or sum of squared errors
for performance measurement of the NN, hence the perform-
ance of the network is measured based on the MSE between
the targets and predictions. Modelling of the network was
accompanied by the early stopping technique, which specifies
a criterion to stop training when the expected conditions are
met. This method stops training from consuming training time
and power redundantly. The conditions used in the early stop-
ping criterion were the maximum number of epochs (1000),
zero error between targets and predictions, the value of the
minimum performance gradient (1� 10�7) and increasing vali-
dation error for six continuous epochs from the lowest value
achieved during training validation.

5. Results
To develop the network-level pavement deterioration prediction
model for flexible pavements, 11 explanatory variables and one
response variable were defined. The input variables of the pave-
ment deterioration model are age, cracking area, cracking
length, inlay and/or overlay thickness, cumulative Esal, collec-
tor roads, arterial roads, wet freeze zone, wet non-freeze zone,
dry freeze zone and dry non-freeze zone. The output variable
of the deterioration model is the PCI.

The pavement deterioration model was formulated using an
ANN and was created using Matlab’s NN toolbox. The ANN
modelling comprised three steps: training, validation and
testing. During the training process, the network was adjusted
by learning from a data examples set called the training set. In
the validation stage, network generalisation was measured and
set to stop training when generalisation halted improvements.
After the training stage, testing was performed to measure the
network performance.

In this research, the data set collected from the LTPP com-
prised 838 samples. For the training set, 586 samples (approxi-
mately 70%) were randomly chosen; the residual data were
separated into a validation set and a testing set of 126 samples
each. Training was performed according to two different strat-
egies with three approaches. The first strategy was to align the
training with a single hidden layer while changing the number
of neurons in the layer. The second strategy was to increase the
number of neurons for an increased number of layers.Ta
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In the first approach, an ANN configuration with a single
hidden layer was trained by changing the number of neurons
from ten to 150 in steps of ten to examine and identify the best
network performance. The analysis showed that 120 hidden

neurons produced the best performance, as shown in Table 5.
Secondly, an ANN configuration with two hidden layers was
utilised by changing the number of neurons in each layer
through a grid approach in which both layers were changed

Table 5. Network performance for different numbers of hidden neurons

Number of hidden neurons Number of iterations

R

Training Validation Testing All

10 19 0.902 0.857 0.899 0.897
20 12 0.899 0.850 0.907 0.892
30 22 0.938 0.848 0.735 0.863
40 11 0.916 0.774 0.771 0.879
50 10 0.899 0.898 0.821 0.886
60 19 0.933 0.874 0.794 0.902
70 11 0.898 0.685 0.527 0.799
80 10 0.916 0.939 0.818 0.904
90 13 0.926 0.878 0.739 0.891
100 16 0.941 0.912 0.734 0.895
110 14 0.972 0.746 0.528 0.852
120 11 0.930 0.821 0.856 0.900
130 12 0.936 0.738 0.735 0.851
140 11 0.932 0.763 0.770 0.880
150 17 0.948 0.753 0.776 0.866

Table 6. Samples of performance of the network with two hidden layers composed of 6–30 neurons

Number of hidden neurons

Number of iterations

R

First layer Second layer Training Validation Testing All

12 18 11 0.9285 0.9061 0.8642 0.9148
12 15 26 0.9237 0.9045 0.8695 0.9114
15 9 8 0.8991 0.8952 0.8846 0.8946
15 21 11 0.9217 0.9192 0.8539 0.9108
15 24 21 0.9336 0.8383 0.9086 0.9180
15 30 12 0.9261 0.8435 0.8894 0.9092
18 15 6 0.9038 0.8834 0.8952 0.8998
24 18 8 0.9025 0.9127 0.8535 0.8955
27 27 6 0.9127 0.8959 0.8772 0.9043
30 9 16 0.9196 0.8973 0.8696 0.9077

Table 7. Samples of performance of the network with two hidden layers composed of 30–70 neurons

Number of hidden neurons

Number of iterations

R

First layer Second layer Training Validation Testing All

30 50 11 0.9065 0.8657 0.8823 0.8988
30 70 8 0.9217 0.8746 0.9181 0.9134
40 30 6 0.9258 0.8575 0.8928 0.9101
40 40 8 0.9231 0.8971 0.8604 0.9078
50 30 8 0.9110 0.8856 0.8943 0.9018
50 50 6 0.9274 0.8622 0.8546 0.9064
60 30 6 0.9233 0.8921 0.8446 0.9095
70 30 7 0.9169 0.8729 0.8059 0.8891
70 40 8 0.9301 0.8736 0.8462 0.9105
70 60 9 0.9086 0.8956 0.8949 0.9030
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from six neurons to 30 neurons by adding three neurons in
each loop. Initially, the first layer was kept at six neurons, the
neurons on the second layer were changed to finish a complete

loop and the performance was recorded. Then, the number of
neurons in the first layer was increased by three and the
network was trained and examined by changing the number of

Table 8. Samples of performance of the network with three hidden layers composed of 10–50 neurons

Hidden neurons

Number of iterations

R

First layer Second layer Third layer Training Validation Testing All

10 20 40 11 0.9252 0.8998 0.8692 0.9133
10 30 10 8 0.9257 0.9077 0.7690 0.9023
10 30 20 5 0.8981 0.9075 0.9002 0.9001
10 30 50 9 0.9217 0.9064 0.8197 0.9038
10 40 40 10 0.9129 0.9114 0.8708 0.9040
10 50 30 8 0.9237 0.9004 0.8166 0.9075
20 10 20 17 0.9361 0.9149 0.8390 0.9180
20 40 30 12 0.9335 0.9101 0.8583 0.9165
50 20 10 10 0.9177 0.9038 0.8703 0.9071
50 50 20 6 0.9113 0.9064 0.8709 0.9022
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Figure 3. Accuracy of the selected pavement-deterioration-based ANN model
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neurons in the second layer, in the range of 6–30. Similarly, the
second layer was changed from six neurons to 30 neurons for
each step change of the first layer, which resulted in 81 training
occurrences. In this approach, the best result was obtained
with 12 neurons in the first layer and 18 neurons in the second
layer. Samples of performance are shown in Table 6.

Using the previous approach, an ANN with two hidden layers
of 30–70 neurons with a step increment of ten neurons was
produced into training, which resulted in 25 training occur-
rences. The best performance was observed when the ANN
was trained with 30 neurons in the first layer and 70 neurons in
the second layer (Table 7).

As the third approach, an ANN was established with three
hidden layers, each comprising 10–50 neurons in increments of
ten neurons for each step, and the same grid approach was
applied as in the second approach. This method produced 125
training occurrences and the best performance was observed
when the training was performed with the first layer made of
20 neurons, the second layer made of 40 neurons and the third
layer made of 30 neurons. Some of the performance samples
are shown in Table 8.

By comparing the results for the best performance from all
three approaches, the NN with three hidden layers with 20
neurons in the first layer, 40 in the second and 30 in the third,
was finalised as the optimum model. As shown in Table 8 and
Figure 3, the accuracy values (R) were 0.9335, 0.9101, 0.8583
and 0.9165 for training, validation, testing and overall, respect-
ively. Figure 4 shows that this pavement-deterioration-based
ANN model showed the best performance, with a high accuracy
of PCI prediction for training, validation, testing and all sets.

Based on all the preceding results, all the possible advantages
and disadvantages of the developed model are summarised in
Table 9.

6. Conclusions
Deterioration prediction based on an ANN model at network
level was established to predict the PCI of in-service flexible
pavements. All potential numerical distresses and road
categorical data were considered in the model development.
The categorical variables were converted into binary values
by applying the one-hot encoding method. Information on
asphalt concrete pavements on a granular base (general pave-
ment studies) in the LTPP database (FHWA, 2012) was
selected and separated into training, validation and testing sets.

The ANN model of pavement deterioration showed a high
goodness of fit (R) between the observed and predicted PCIs
(greater than 0.91 and 0.85 at the validation stage and testing

Best validation performance is 80.7721 at epoch 12
104

103

102

10

1

M
SE

0 2 4 6 8

Number of epochs

10 12 14 16 18

Training
Validation
Testing
Best

Figure 4. Performance of the selected pavement-deterioration-based ANN model

Table 9. Advantages and disadvantages of the unified ANN pre-
diction model

Advantages Disadvantages

Less statistical training for model
formulation

Difficulty of interpretation of
model parameters (black box)

Comprehensive and easy to
implement

Not for all pavement types

High accuracy as there is a huge
quantity of historical data

Not accurate for a shortage of
availability of historical data

Capable of addressing all
possible interactions between
input parameters

Routine maintenance activities
are not considered

Applicable at the network level Not applicable at the project
level
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stage, respectively), thus demonstrating the efficiency of the
developed ANN model for predicting pavement deterioration.
Based on the results, the developed model is comprehensive
and easy to implement at network-level deterioration for
specific roads and weather conditions.

The unified prediction model will be a beneficial tool that can
assist highways agencies in accurately estimating future pave-
ment deterioration. Furthermore, the unified prediction model
of pavement deterioration can be easily incorporated with an
algorithm of maintenance programming. Therefore, it can
select the appropriate treatment strategy with less effort and
time for a specific section of the pavement network.
Additionally, as future work, this unified deterioration-
prediction-based ANN model could be combined with evol-
utionary optimisation algorithms such as genetic algorithms
and particle swarm optimisation to determine the optimal
maintenance plan.

Although the unified ANN model shows good capability to
predict the PCI, several limitations have been recognised and
will be addressed in future research. The first improvement will
be to incorporate, mathematically, the positive influence of pre-
ventive maintenance measures in the predictions of deterio-
ration and PCI. Secondly, as the limited availability of past
condition data reduces the model accuracy for collector roads,
further efforts are underway to gather more data for similar
types of road.
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