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Abstract
Using a left multiplication defined on a right quaternionic Hilbert space, we shall
demonstrate that pure squeezed states, which are obtained by the sole action of the
squeeze operator on the vacuum state, can be defined with all the desired proper-
ties on a right quaternionic Hilbert space. Further, we shall also demonstrate that
squeezed states, which are obtained by the action of the squeeze operator on canoni-
cal coherent states, in other words they are obtained by the action of the displacement
operator followed by the action of the squeeze operator on the vacuum state, can be
defined on the same Hilbert space, but the non-commutativity of quaternions pre-
vents us in getting the desired results. However, we will show that if one considers
the quaternionic slice wise approach, then the desired properties can be obtained for
quaternionic squeezed states.

Keywords Quaternion · Displacement operator · Squeezed operator ·
Coherent states · Lie algebra
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1 Introduction

As it is well known, quantum mechanics can be formulated over the complex and
the quaternionic numbers, see [7]. In recent times, new mathematical tools in quater-
nionic analysis became available in the literature and, as a consequence, there has
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been a resurgence of interest for the quaternionic quantum mechanics. In this formu-
lation, in complete analogy with the complex formulation, states are represented by
vectors of a separable quaternionic Hilbert space and observables are represented by
quaternionic linear and self-adjoint operators, see, for example, the celebrated book
[1] for more information.

However, until the most recent times, an appropriate spectral theory was missing
since there was not a satisfactory notion of spectrum in quaternionic functional calcu-
lus. This difficulty has been solved with the introduction of the so-called S-spectrum
(see [9]) and, accordingly, with a proof of the spectral theorem for normal operators,
see [4].

In a right quaternionic Hilbert space with a right multiplication on it, in general,
for any quaternionic linear operator A and q ∈ H, the quaternions, (qA)† �= qA†.
Due to this we cannot define a linear self-adjoint operator in quaternionic quantum
mechanics similar to the complex momentum operator [17]. For various attempt in
defining a quaternionic self-adjoint momentum operator and their drawbacks see [1].
However, in our paper [18], we offered a discussion on the various notions of momen-
tum operator and we show that, by using the notion of left multiplication in a right
quaternionic Hilbert space it is possible to define a linear self-adjoint momentum
operator in complete analogy with the complex case. The possibility to introduce a
left multiplication in a right quaternionic Hilbert space is very well known and a very
useful tool in several cases. In fact a linear space over the quaternions is, in general,
one sided (either left or right). However, in order to have good properties when con-
sidering linear operators acting on the space, it is necessary to have a multiplication
on both sides. It can always be defined but it requires to fix a Hilbert basis. Therefore
the results obtained with such a choice of basis have to be shown to be independent
of the choice of the basis. However, when we consider a particular quantum system
we always work with a fixed basis, which is the wavefunctions of the Hamiltonian
(Fock space basis). Therefore we do not need to be concerned about working with a
fixed basis.

In [18] we have also deepened the study of an appropriate harmonic oscilla-
tor displacement operator showing that this displacement operator leads to a square
integrable, irreducible and unitary representation and that it satisfies most of the
properties of its complex counterpart.

In this paper we introduce and study the squeeze operator which is formally
defined as in the complex setting but where the operation involved in the definition
have to be interpreted in an appropriate way. To be specific, a squeeze operator is
obtained by exponentiating 1

2 (p · (a†)2 − p · a2) where p· is the left multiplication
by the quaternion p and a†, a are the creation and annihilation operators respectively.
We show that this latter operator is anti-hermitian and we study several properties of
the squeezed operator. We also study quaternionic pure squeezed states, obtained by
the action of the squeeze operator on the vacuum state. For clarity, as in the com-
plex case, the distinction between pure squeezed states, squeezed states, and the two
photon states is as follows [10, 14, 22].

• Pure squeezed states: S(p)�0.
• Squeezed states: S(p)D(q)�0.
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• Two photons states: D(q)S(p)�0,

where D(q) is the displacement operator, S(p) is the squeeze operator, and �0 is the
vacuum state of the Fock space.

Due to the non-commutative nature of quaternions, there is an intrinsic issue if one
is aimed to obtain relations involving both the displacement and the squeeze operator.
Suitable relations can be obtained only slice-wise.

There is a vast interest in squeezed states in various applications, particularly in
the coding and transmission of information through optical devices [10, 14, 22]. In
the quaternion case, these squeezed states appear as two component states in four
variables. Hence these states have more degrees of freedom and may be useful in
application.

The plan of the paper is as follows. Section 2 contains some preliminaries on
quaternions, right quaternionic Hilbert spaces and the notion of left multiplication.
Section 3 studies the Bargmann space of regular functions, the displacement operator,
the squeeze operator and some of its properties. We also introduce some quater-
nionic Lie algebras constructed by taking some suitable real or complex linear spaces
and equipping them with suitable Lie brackets. The expectation values and the vari-
ances of the creation and annihilation operator and of the quadrature operators are
computed with pure squeezed states in this section. We also define the squeezed
states by consecutively applying the displacement operator and the squeeze opera-
tor. The fourth section is devoted to the study of squeezed states on a quaternion
slice. We also prove a disentanglement formula and obtain the squeezed basis in
terms of the quaternionic Hermite polynomials. Section 5 ends the manuscript with a
conclusion.

2 Mathematical Preliminaries

In this section we recall some basic facts about quaternions, their complex matrix
representation, quaternionic Hilbert spaces as needed here. For details we refer the
reader to [1, 6, 21, 23].

2.1 Quaternions

Let H denote the field of quaternions. Its elements are of the form q = q0 + q1i +
q2j + q3k where q0, q1, q2 and q3 are real numbers, and i, j,k are imaginary units
such that i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and ki = −ik = j. The
quaternionic conjugate of q is defined to be q = q0 − q1i − q2j − q3k. Quaternions
can be represented by 2 × 2 complex matrices:

q = q0σ0 + iq · σ , (2.1)

with q0 ∈ R, q = (q1, q2, q3) ∈ R
3, σ0 = I2, the 2 × 2 identity matrix, and

σ = (σ1, −σ2, σ3), where the σ�, � = 1, 2, 3 are the usual Pauli matrices. The
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quaternionic imaginary units are identified as, i = √−1σ1, j = −√−1σ2, k =√−1σ3. Thus,

q =
(

q0 + iq3 −q2 + iq1
q2 + iq1 q0 − iq3

)
(2.2)

and q = q† (matrix adjoint) . Using the polar coordinates:

q0 = r cos θ,

q1 = r sin θ sinφ cosψ,

q2 = r sin θ sinφ sinψ,

q3 = r sin θ cosφ,

where (r, φ, θ, ψ) ∈ [0, ∞) × [0, π ]2 × [0, 2π), we may write

q = A(r)eiθσ (̂n), (2.3)

where
A(r) = rσ0 (2.4)

and

σ (̂n) =
(

cosφ sinφeiψ

sinφe−iψ − cosφ

)
. (2.5)

The matrices A(r) and σ (̂n) satisfy the conditions,

A(r) = A(r)†, σ (̂n)2 = σ0, σ (̂n)† = σ (̂n) (2.6)

and [A(r), σ (̂n)] = 0. Note that a real norm on H is defined by

|q|2 := qq = r2σ0 = (q2
0 + q2

1 + q2
2 + q2

3 ).

Note also that for p, q ∈ H, we have pq = q p, pq �= qp, qq = qq, and real numbers
commute with quaternions. Quaternions can also be interpreted as a sum of scalar
and a vector by writing

q = q0 + q1i + q2j + q3k = (q0,q);
where q = q1i + q2j + q3k. Now we borrow some materials as needed here from
[11]. Let

S = {I = x1i + x2j + x3k | x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1},

we call it a quaternion sphere.

Proposition 2.1 [11] For any non-real quaternion q ∈ H � R, there exist, and are
unique, x, y ∈ R with y > 0, and Iq ∈ S such that q = x + Iqy.

For every quaternion I ∈ S, the complex line CI = R + IR passing through the
origin, and containing 1 and I , is called a quaternion slice. Thereby, we can see that

H =
⋃
I∈S

CI and
⋂
I∈S

CI = R (2.7)

One can also easily see that CI ⊂ H is commutative, while, elements from two
different quaternion slices, CI and CJ (for I, J ∈ S with I �= J ), do not necessarily
commute.
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2.2 Quaternionic Hilbert Spaces

In this subsection we introduce right quaternionic Hilbert spaces. For details we refer
the reader to [1]. We also define the Hilbert space of square integrable functions on
quaternions based on [6, 13, 21].

2.2.1 Right Quaternionic Hilbert Space

Let V R
H

be a linear vector space under right multiplication by quaternionic scalars
(again H standing for the field of quaternions). For f, g, h ∈ V R

H
and q ∈ H, the

inner product

〈· | ·〉 : V R
H

× V R
H

−→ H

satisfies the following properties

(i) 〈f | g〉 = 〈g | f 〉
(ii) ‖f ‖2 = 〈f | f 〉 > 0 unless f = 0, a real norm
(iii) 〈f | g + h〉 = 〈f | g〉 + 〈f | h〉
(iv) 〈f | gq〉 = 〈f | g〉q
(v) 〈f q | g〉 = q〈f | g〉
where q stands for the quaternionic conjugate. We assume that the space V R

H
is com-

plete under the norm given above. Then, together with 〈· | ·〉 this defines a right
quaternionic Hilbert space, which we shall assume to be separable. Quaternionic
Hilbert spaces share most of the standard properties of complex Hilbert spaces. In
particular, the Cauchy-Schwarz inequality holds on quaternionic Hilbert spaces as
well as the Riesz representation theorem for their duals. Thus, the Dirac bra-ket
notation can be adapted to quaternionic Hilbert spaces:

| f q〉 =| f 〉q, 〈f q |= q〈f | ,

for a right quaternionic Hilbert space, with |f 〉 denoting the vector f and 〈f | its dual
vector. Similarly the left quaternionic Hilbert space V L

H
can also be described, see

for more detail [1, 17, 19]. The field of quaternions H itself can be turned into a left
quaternionic Hilbert space by defining the inner product 〈q | q′〉 = qq′† = qq′ or into
a right quaternionic Hilbert space with 〈q | q′〉 = q†q′ = qq′. Further note that, due
to the non-commutativity of quaternions the sum

∑∞
m=0 p

mqm/m! cannot be written
as exp(pq). However, in any Hilbert space the norm convergence implies the conver-
gence of the series and

∑∞
m=0 |pmqm/m!| � e|p||q|, therefore

∑∞
m=0 p

mqm/m! = e
pq∗

converges.

2.2.2 Quaternionic Hilbert Spaces of Square Integrable Functions

Let (X, μ) be a measure space and H the field of quaternions, then

L2
H
(X, dμ) =

{
f : X → H

∣∣∣∣
∫

X

|f (x)|2dμ(x) < ∞
}
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is a right quaternionic Hilbert space which is denoted by L2
H
(X, μ), with the

(right) scalar product

〈f | g〉 =
∫

X

f (x)g(x)dμ(x), (2.8)

where f (x) is the quaternionic conjugate of f (x), and (right) scalar multiplication
f a, a ∈ H, with (f a)(q) = f (q)a (see [13, 21] for details). Similarly, one could
define a left quaternionic Hilbert space of square integrable functions.

2.3 Left Scalar Multiplications on VR
H

We shall extract the definition and some properties of left scalar multiples of vec-
tors on V R

H
from [12] as needed for the development of the manuscript. The left

scalar multiple of vectors on a right quaternionic Hilbert space is an extremely non-
canonical operation associated with a choice of preferred Hilbert basis. Now the
Hilbert space V R

H
has a orthonormal basis (Hilbert basis)

O = {ϕk | k ∈ N}, (2.9)

where N is a countable index set. The left scalar multiplication ‘·’ on V R
H

induced by
O is defined as the map H × V R

H
 (q, φ) �−→ q · φ ∈ V R

H
given by

q · φ :=
∑
k∈N

ϕkq〈ϕk | φ〉, (2.10)

for all (q, φ) ∈ H × V R
H
. Since all left multiplications are made with respect to some

basis, assume that the basis O given by (2.9) is fixed all over the paper.

Proposition 2.2 [12] The left product defined in (2.10) satisfies the following
properties. For every φ, ψ ∈ V R

H
and p, q ∈ H,

(a) q · (φ + ψ) = q · φ + q · ψ and q · (φp) = (q · φ)p.
(b) ‖q · φ‖ = |q|‖φ‖.
(c) q · (p · φ) = (qp · φ).
(d) 〈q · φ | ψ〉 = 〈φ | q · ψ〉.
(e) r · φ = φr , for all r ∈ R.
(f) q · ϕk = ϕkq, for all k ∈ N .

Remark 2.3 It is immediate that (p + q) · φ = p · φ + q · φ, for all p, q ∈ H and
φ ∈ V R

H
. Moreover, with the aid of (b) in above Proposition (2.2), we can have, if

{φn} in V R
H

such that φn −→ φ, then q · φn −→ q · φ. Also if ∑
n φn is a convergent

sequence in V R
H
, then q · (

∑
n φn) = ∑

n q · φn.

Furthermore, the quaternionic scalar multiplication of H-linear operators is also
defined in [12]. For any fixed q ∈ H and a given right H-linear operator A :
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D(A) −→ V R
H
, the left scalar multiplication ‘·’ of A is defined as a map q · A :

D(A) −→ V R
H

by the setting

(q · A)φ := q · (Aφ) =
∑
k∈N

ϕkq〈ϕk | Aφ〉, (2.11)

for all φ ∈ D(A), the domain of A. It is straightforward that qA is a right H-linear
operator. If q ·φ ∈ D(A), for all φ ∈ D(A), one can define right scalar multiplication
‘·’ of the right H-linear operator A : D(A) −→ V R

H
as a map A · q : D(A) −→ V R

H

by the setting
(A · q)φ := A(q · φ), (2.12)

for all φ ∈ D(A). It is also a right H-linear operator. One can easily obtain that, if
q · φ ∈ D(A), for all φ ∈ D(A) and D(A) is dense in V R

H
, then

(q · A)† = A† · q and (A · q)† = q · A†. (2.13)

3 Bargmann Space of Regular and Anti-Regular Functions

The Bargmann space of left regular functionsHB
r is a closed subspace of the right Hilbert

space LH(H, dζ(r, θ, φ, ψ)), where dζ(r, θ, φ, ψ) = 1
4π e−r2 sinφdrdθdφdψ . An

orthonormal basis of this space is given by the monomials (which are both left and
right regular)

�n(q) = qn

√
n! ; n = 0, 1, 2, · · · .

Similarly the vectors

�n(q) = �n(q) = qn

√
n! ; n = 0, 1, 2, · · ·

form an orthonormal basis in the corresponding space of right anti-regular functions
HB

ar . There is also an associated reproducing kernel

KB(q, p) =
∞∑

n=0

�n(q)�n(p) = e
qp
� (3.1)

see [5, 19] for details.

3.1 Coherent States on Right Quaternionic Hilbert Spaces

The main content of this section is extracted from [20] as needed here. For an
enhanced explanation we refer the reader to [20]. In [20] the authors have defined
coherent states (CS) on V R

H
and V L

H
, and also established the normalization and

resolution of the identities for each of them.

On the Bargmann space HB
r , the normalized canonical coherent states are

ηq = 1√
KB(q, q)

∞∑
n=0

�n�n(q) = e− |q|2
2

∞∑
n=0

�n

qn

n! = e− |q|2
2

∞∑
n=0

qn

n! · �n, (3.2)
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where we have used the fact in Proposition 2.2 (f), with a resolution of the identity

∫
H

|ηq〉〈ηq|dζ(r, θ, φ, ψ) = IHB
r
. (3.3)

Now take the corresponding annihilation and creation operators as

a�0 = 0

a�n = √
n�n−1; ∀n > 1

a†�n = √
n + 1�n+1; ∀n � 0.

The operators can be taken as a† = q (multiplication by q) and a = ∂s (left slice regu-
lar derivative), see [17, 19]. It is also not difficult to see that (a†)† = a, [a, a†] = IHB

r

and aηq = q · ηq. Further N = a†a serves as the number operator (see also [18]).

First of all, as in the complex quantum mechanics, all the operators considered
here are unbounded operators. However, the operators act asHB

r  |φ〉 �→ |ψ〉 ∈ HB
r ,

that is, the domain and the range of the operators are dense subsets of HB
r . Further-

more, the Hilbert space, HB
r , can be taken as a space right-spanned by the regular

functions {qm

m! | m ∈ N} or anti-regular functions {qm

m! | m ∈ N} over H (counter-
parts of holomorphic and anti-holomorphic functions). In this respect, the operators
considered here do not have any domain problems as for the operators in the complex
quantum mechanics. Therefore, we can use the operator tools of complex quan-
tum mechanics, in particular, the Baker-Campbell-Hausdorff formula (for a complex
argument along these lines see chapter 14 in [8]).

The following Proposition demonstrate commutativity between quaternions and
the right linear operators a and a†. Further, it plays an important role. This proposition
is not necessarily true for general quaternionic linear operators.

Proposition 3.1 [18] For each q ∈ H, we have q · a = a · q and q · a† = a† · q.

3.2 The Right Quaternionic Displacement Operator

On a right quaternionic Hilbert space with a right multiplication we cannot have
a displacement operator as a representation for the representation space HB

r . This
fact has been indicated twice in the literature, in [2] while studying quaternionic
Perelomov type CS and in [20] when the authors studied the quaternionic canonical
CS. However, in [18], we have shown that if we consider a right quaternionic Hilbert
space with a left multiplication on it, see (2.11), we can have a displacement operator
as a representation for the representation space HB

r with all the desired properties. In
fact, the map q �→ D(q) is a projective representation of the additive Abelian group
H, since the composition of operators D(q) and D(p) produce another displacement
operator with a phase factor [18]. We shall extract somematerials from [18] as needed
here.
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Proposition 3.2 [18] The right quaternionic displacement operator D(q) =
eq·a†−q·a is a unitary, square integrable and irreducible representation of the
representation space HB

r .

The following proposition discusses two versions for the displacement opera-
tor, the complex version is commonly used in complex quantum mechanics without
hesitation, namely normal and anti-normal orderings.

Proposition 3.3 [18] The displacement operatorD(q) satisfies

(i) the normal ordering property: D(q) = e− |q|2
2 eq·a†e−q·a,

(ii) the anti-normal ordering property: D(q) = e
|q|2
2 e−q·aeq·a† .

Furthermore, the coherent state ηq is generated from the ground state �0 by the
displacement operatorD(q),

ηq = D(q)�0. (3.4)

Proposition 3.4 [18] The displacement operator D(q) satisfies the following prop-
erties

(i) D(q)†aD(q) = a + q (ii) D(q)†a†D(q) = a† + q.

3.3 The Right Quaternionic Squeeze Operator

Same reason as for the displacement operator, with a right multiplication on a right
quaternionic Hilbert space the squeezed operator cannot be unitary. However, it
becomes unitary with a left multiplication on a right quaternionic Hilbert space.

Lemma 3.5 The operator A = p · (a†)2 − p · a2 is anti-hermitian.
Proof Consider

A† = (p · (a†)2 − p · a2)†
= ((a†)2)† · p − (a2)† · p by 2.13

= a2 · p − (a†)2 · p
= p · a2 − p · (a†)2 by Prop.3.1

= −A.

Let A† = −A = B, then A and B commute and both commute with the com-
mutator [A, B]. Further e− 1

2 [A,B] = 1, therefore by the Baker-Campbell-Hausdorff
formula,

eAeBe− 1
2 [A,B] = eA+B

we have, for the operator

S(p) = e
1
2 (p·(a†)2−p·a2),

S(p)S(p)† = e
1
2Ae

1
2A† = e

1
2 (A−A) = IHB

r
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and similarly S(p)†S(p) = IHB
r
. That is the operator S(p) is unitary and we call this

operator the quaternionic squeeze operator. Further

S(p)† = e− 1
2A = S(−p).

If we take

K+ = 1

2
(a†)2, K− = 1

2
a2, and K0 = 1

2
(a†a + 1

2
IHB

r
),

Then they satisfy the commutation rules

[K0, K+] = K+, [K0, K−] = −K−, and [K+, K−] = −2K0.

That is, K+, K− and K0 are the generators of the su(1, 1) algebra and they satisfy
the su(1, 1) commutation rules. In terms of these operators the squeeze operator S(p)

can be written as
S(p) = ep·K+−p·K− . (3.5)

3.4 Some Quaternionic Lie Algebras

In the complex quantum mechanics the generators {N, a2, (a†)2} spans the Lie alge-
bra su(1, 1) and this algebra is involved in the construction of pure squeezed states.
The generators {a, a†, I, N, a2, (a†)2} spans a six dimensional algebra h6, which is
involved in the construction of the generalized squeezed states [10]. In the following
we generalize it to quaternions.

Let τ ∈ {i, j,k} and define
h

(τ )
6 = linear span over Cτ {IHB

r
, a, a†, N = a†a, a2, (a†)2};

where Cτ = {x = x1 + τx2 | x1, x2 ∈ R}. Then the Proposition 2.2 guarantees,
together with the Remark 2.3, that h(τ )

6 is a vector space over Cτ under the left
multiplication ‘·’ which is defined in (2.11). Define

[·, ·]τ : h(τ )
6 × h

(τ )
6 −→ h

(τ )
6 by [A,B]τ = AB − BA, for all A,B ∈ h

(τ )
6 .
(3.6)

One can easily see that, for any A,B ∈ h
(τ )
6 , [A,B]τ ∈ h

(τ )
6 , using the facts that

[a, a†]τ =IHB
r
, [a, N]τ =a, [a†, N]τ =−a†, [a2, (a†)2]τ =−2(2N+ IHB

r
),

[a2, a†]τ =2a, [(a†)2, a]τ =−2a†, [a2, N]τ =2a2, [(a†)2, N]τ =−2(a†)2.

with the aid of Proposition 3.1. Hence h
(τ )
6 is a Lie algebra with the Lie bracket

[·, ·]τ .
One can easily check that the subset (but it is a linear space itself over R) of h(τ )

6 ,

linear span over R {IHB
r
, a, a†, N = a†a, a2, (a†)2}

forms a Lie algebra with the Lie bracket [A,B]1 = AB − BA, for all elements A,B
in this linear space (it is a restriction map of [·, ·]τ ). Furthermore, we have another
subset

h
(τ )
12 = linear span over R {IHB

r
,N,a,a†,a2, (a†)2, τ ·IHB

r
, τ·N,τ·a, τ·a†, τ·a2, τ·(a†)2}
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which is a linear space over R, and forms a Lie algebra with the Lie bracket [·, ·]τ .
Moreover, An arbitrary element A ∈ h

(τ )
12 takes the form

A = a1 · IHB
r

+ a2 · N + a3 · a + a4 · a† + a5 · a2 + a6 · (a†)2 + a(1)
τ τ · a

+a(2)
τ τ · a† + a(3)

τ τ · a2 + a(4)
τ τ · (a†)2; (3.7)

where al, a
(m)
τ ∈ R, for all l = 1, 2, · · · , 6, m = 1, 2, · · · , 4. It can be simply

expressed as

A = A1 + Aτ ; (3.8)

where

A1 = a1 · IHB
r

+ a2 · N + a3 · a + a4 · a† + a5 · a2 + a6 · (a†)2, (3.9)

Aτ =a(1)
τ τ · IHB

r
+ a(2)

τ τ · N+a(3)
τ τ · a+a(4)

τ τ · a†+a(5)
τ τ · a2+a(6)

τ τ · (a†)2. (3.10)
Only for notational convenience, we shall write q = q0 + qii + qjj + qkk with

q0, qi, qj, qk ∈ R as q = q0 + ∑
τ=i,j,k qτ τ . Let

h24 = linear span over R {τ · IHB
r
, τ · N, τ · a, τ · a†, τ · a2, τ · (a†)2 | τ = 1, i, j,k}.

Then h24 is a vector space over R, and it contains h(τ )
12 . Define the map [·, ·] : h24 ×

h24 −→ h24, by the setting (using the expression (3.8))

[A,B] := [A1,B1]1+
∑

τ=i,j,k

[A1,Bτ ]τ +
∑

τ=i,j,k

[Aτ ,B1+Bτ ]τ , for all A,B ∈ h24.

(3.11)
Alternatively it can be written as

[A,B] =
∑

τ=i,j,k

(
1

3
[A1,B1]τ +[A1,Bτ ]τ +[Aτ ,B1+Bτ ]τ

)
, for all A,B ∈ h24.

(3.12)
Since [·, ·]τ is a Lie bracket, it follows that h24 is a Lie algebra with the Lie bracket
[·, ·]. The following Proposition can be proved using this Lie bracket [·, ·].

Proposition 3.6 Let p = |p|eiθσ (n̂) and N = a†a, the number operator, then the
squeeze operator S(p) satisfies the following relations

(i) S(p)†aS(p) = (cosh |p|)a +
(
eiθσ (n̂) sinh |p|

)
· a†.

(ii) S(p)†a†S(p) = (cosh |p|)a† +
(
e−iθσ (n̂) sinh |p|

)
· a.

(iii) S(p)†NS(p) = (cosh2 |p|)a†a +
(
e−iθσ (n̂) sinh |p| cosh |p|

)
· a2

+
(
eiθσ (n̂) sinh |p| cosh |p|

)
· (a†)2 + (sinh2 |p|)aa†.
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Proof With A = 1
2 (p · (a†)2 − p · a2) and the commutation rule [a, a†] = IHB

r
we

can calculate

[−A, a] = p · a†
[−A, [−A, a]] = |p|2a
[−A, [−A, [−A, a]]] = |p|2p · a†
[−A, [−A, [−A, [−A, a]]]] = |p|4a
[−A, [−A, [−A, [−A, [−A, a]]]]] = |p|4p · a†
· · · · · · · · ·

Therefore, by using the identity eCBe−C = B+[C, B]+ 1
2! [C, [C, B]]+· · · we have

S(p)†aS(p) = a + p · a† + 1

2! |p|
2a + 1

3! |p|
2p · a† + 1

4! |p|
4a + 1

5! |p|
4p · a† + · · ·

= (a + 1

2! |p|
2a + 1

4! |p|
4a + · · · )

+eiθσ (n̂) · (|p|a† + 1

3! |p|
3a† + 1

5! |p|
5a† + · · · )

=
( ∞∑

n=0

|p|2n
(2n)!

)
a + eiθσ (n̂)

( ∞∑
n=0

|p|2n+1

(2n + 1)!

)
· a†

= (cosh |p|)a +
(
eiθσ (n̂) sinh |p|

)
· a†.

The second relation is the hermitian conjugate of the first one. The third relation can
be obtained by writing

S(p)†NS(p) = S(p)a†aS(p) = S(p)aS(p)S(p)†aS(p)

and then multiplying the first and the second relations.

3.5 Right Quaternionic Quadrature Operators

We introduce the quadrature operators analogous to the complex quadrature operators
with a left multiplication on a right quaternionic Hilbert space.

X = 1

2
(a + a†) and Y = − i

2
· (a − a†), (3.13)

where the quaternion unit i in Y can be replaced by j,k or any I ∈ S (see [18]).

Proposition 3.7 The operators X and Y are self-adjoint and [X, Y ] = i
2 · IHB

r
.

Proof The self-adjointness of the operators follows prom the Prop. 3.1 (see [18]).
Now it is straight forward to compute, with the aid of Prop. 3.1,

XY = −1

4
(a + a†)(i · (a − a†) = −1

4
i · (a2 − aa† + a†a − (a†)2)
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and

YX = −1

4
i · (a − a†)(a + a†) = −1

4
i · (a2 + aa† − a†a − (a†)2).

Thus

[X, Y ] = XY − YX = −1

2
i · (−aa† + a†a) = 1

2
i · [a, a†] = 1

2
i · IHB

r
.

Definition 3.8 [10] Let A and B be quantum observables with commutator [A, B] =
i · C. When variances are calculated in a generic state, one obtains from Cauchy-
Schwarz inequality (�A)(�B) � 1

2 |〈C〉|. A state will be called squeezed with
respect to the pair (A, B) if (�A)2 (or (�B)2) < 1

2 |〈C〉|. A state is called ideally
squeezed if the equality (�A)(�B) = 1

2 |〈C〉| is reached together with (�A)2 (or
(�B)2) < 1

2 |〈C〉|.

We adapt the same definition for quaternionic squeezed states.

3.6 Right Quaternionic Pure Squeezed States

A pure squeezed state is produced by the sole action of the unitary operator S(p)

on the vacuum state. That is, ηp = S(p)�0 is the pure squeezed state. Even though
a series expression is not necessary for the computations of the expectation values,
we provide the following for the sake of completeness. Let C = 1

2p · (a†)2 and
D = 1

2p · a2. Then it can be computed that

[C, D]�n = −1

4

(
p · (a†)2 p · a2 − p · a2 p · (a†)2

)
�n

= 1

4
|p|2

(
(a†)2a2 − a2(a†)2

)
�n

= −1

2
|p|2(2n + 1)�n.

That is [C, D] = − 1
2 |p|2(2n + 1)IHB

r
. Further, similarly, we can obtain

[C, [C, D]]�n = 0 and [D, [C, D]]�n = 0.

That is [C, [C, D]] = 0 and [D, [C, D]] = 0. Therefore from the BCH formula we
have

S(p) = eC−D = e
1
2 [C,D]eCe−D .
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Now

S(p)�0 = e
1
2 [C,D]eCe−D�0

= e
1
2 [C,D]eC�0

= e
1
2 [C,D]

∞∑
n=0

(p · (a†)2)n

2nn! �0

= e
1
2 [C,D]

∞∑
n=0

pn
√

(2n)!
2nn! · �2n.

Further,

[C, D]�2n = (
1

2
p · (a†)2

1

2
p · a2 − 1

2
p · a2 1

2
p(a†)2)�2n

= 1

4
|p|2((a†)2a2 − a2(a†)2)�2n

= 1

4
|p|2(−8n − 2)�2n

Therefore

e
1
2 [C,D]�2n = e− 1

8 |p|2(8n+2)�2n = e−n|p|2e− 1
4 |p|2�2n.

Thus

S(p)�0 = ηp = e− 1
4 |p|2

∞∑
n=0

e−n|p|2 pn
√

(2n)!
2nn! · �2n. (3.14)

Since S(p) is a unitary operator, by construction we have

〈ηp|ηp〉 = 〈S(p)�0|S(p)�0〉 = 〈�0|�0〉 = 1. (3.15)

The states ηp are normalized. Since the pure squeezed state ηp only possess the even
numbered basis vector, {�2n | n = 0, 1, 2, · · · } a resolution of the identity cannot
hold on HB

r . However, if we form a space right spanned by {�2n | n = 0, 1, 2, · · · }
over the quaternions it may be possible to find a resolution of the identity for that
space. However, such an attempt is not necessary and even in the complex case, as
far as we know, it does not exist in the literature.
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3.6.1 Expectation Values and the Variances

For a normalized state η the expectation value of an operator F is 〈F 〉 = 〈η|F |η〉.
First let us see the expectation values of a and a† using Proposition 3.6.

〈a〉 = 〈ηp|a|ηp〉 = 〈S(p)�0|a|S(p)�0〉
= 〈�0|S(p)†aS(p)�0〉
= 〈�0|(cosh |p|)a +

(
eiθσ (n̂) sinh |p|

)
· a†�0〉

= (cosh |p|)〈�0|a�0〉 + sinh |p|〈�0|
(
eiθσ (n̂)

)
· a†�0〉

= 0 + sinh |p|〈�0|
(
eiθσ (n̂)

)
· �1〉

= sinh |p|〈�0|�1e
iθσ (n̂)〉 as �1 is a basis vector, see Prop.2.2 (f)

= sinh |p|〈�0|�1〉eiθσ (n̂) = 0.

Similarly we get
〈a†〉 = 〈ηp|a†|ηp〉 = 0.

Hence we get

〈X〉 = 〈ηp|X|ηp〉 = 0 and 〈Y 〉 = 〈ηp|Y |ηp〉 = 0. (3.16)

Since

S(p)†aS(p)S(p)†a†S(p) = S(p)†aa†S(p)

= cosh2 |p|aa† + e−iθσ (n̂) cosh |p| sinh |p| · a2
+eiθσ (n̂) cosh |p| sinh |p| · (a†)2 + sinh2 |p|a†a

and similarly

S(p)†a†aS(p)

= cosh2 |p|a†a + e−iθσ (n̂) cosh |p| sinh |p| · a2
+eiθσ (n̂) cosh |p| sinh |p| · (a†)2 + sinh2 |p|aa†,

S(p)†a2S(p) = cosh2 |p|a2 + eiθσ (n̂) cosh |p| sinh |p| · (aa† + a†a)

+e2iθσ (n̂) sinh2 |p| · (a†)2,

S(p)†(a†)2S(p) = cosh2 |p|(a†)2 + e−iθσ (n̂) cosh |p| sinh |p| · (aa† + a†a)

+e−2iθσ (n̂) sinh2 |p| · a2.
Using the above relations we readily obtain

〈aa†〉 = 〈ηp|aa†|ηp〉 = cosh2 |p|,
〈a†a〉 = 〈ηp|a†a|ηp〉 = sinh2 |p|,
〈a2〉 = 〈ηp|a2|ηp〉 = cosh |p| sinh |p|eiθσ (n̂),

〈(a†)2〉 = 〈ηp|(a†)2|ηp〉 = cosh |p| sinh |p|e−iθσ (n̂).
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Since X2 = 1
4 ((a

†)2 +aa† +a†a+a2) and Y 2 = 1
4 (aa

† +a†a−a2 − (a†)2) we have

〈ηp|X2|ηp〉 = 1

4

{
(cosh2 |p| + sinh2 |p|)I2 + cosh |p| sinh |p|

(
eiθσ (n̂) + e−iθσ (n̂)

)}

= 1

4

{
cosh(2|p|)I2 + sinh(2|p|) cos (θσ (n̂))

}
,

〈ηp|Y 2|ηp〉 = 1

4

{
cosh(2|p|)I2 − sinh(2|p|) cos (θσ (n̂))

}
.

Since 〈�X〉2 = 〈ηp|X2|ηp〉 − 〈ηp|X|ηp〉2 and 〈ηp|X|ηp〉 = 0 we have

〈�X〉2 = 1

4

{
cosh(2|p|)I2 + sinh(2|p|) cos (θσ (n̂))

}
,

〈�Y 〉2 = 1

4

{
cosh(2|p|)I2 − sinh(2|p|) cos (θσ (n̂))

}
.

Hence

〈�X〉2〈�Y 〉2 = 1

16

{
cosh2(2|p|)I2 − sinh2(2|p|) cos2 (θσ (n̂))

}

= 1

16

{
cosh2(2|p|)I2 − sinh2(2|p|)(1 − sin2 (θσ (n̂)))

}

= 1

16

{
I2 + sinh2(2|p|) sin2 (θσ (n̂))

}
.

An exact analogue of the complex case. Since we are in the quaternions, it appears
as a 2 × 2 matrix. Further in the complex case, the product of the variances depends
on r and θ (when z = reiθ ). In the quaternion case it depends on all four parameters
r, θ, φ and ψ . Let us write

U + i · V = e− i
2 θσ (n̂) · (X + i · Y ) = e− i

2 θσ (n̂) · a. (3.17)

Then using Proposition 3.1 we can write

S(p)†(U + i · V )S(p) = e− i
2 θσ (n̂) · S(p)†aS(p)

= e− i
2 θσ (n̂) · (cosh |p|a + eiθσ (n̂) sinh |p|a†)

= e|p| + e−|p|

2
e− i

2 θσ (n̂) · a + e|p| − e−|p|

2
e

i
2 θσ (n̂) · a†

= 1

2
(e− i

2 θσ (n̂) · a + e
i
2 θσ (n̂) · a†)e|p|

+1

2
(e− i

2 θσ (n̂) · a − e
i
2 θσ (n̂) · a†)e−|p|

= Ue|p| + i · V e−|p|,

with

U = 1

2
(e− i

2 θσ (n̂) · a + e
i
2 θσ (n̂) · a†)e|p| and

V = − i

2
· (e− i

2 θσ (n̂) · a − e
i
2 θσ (n̂) · a†)e|p|.
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Since

U2 = 1

4
(e−iθσ (n̂) · a2 + aa† + a†a + eiθσ (n̂) · (a†)2) and

V 2 = −1

4
(e−iθσ (n̂) · a2 − aa† − a†a + eiθσ (n̂) · (a†)2),

it is straight forward that 〈ηp|U |ηp〉 = 0, 〈ηp|V |ηp〉 = 0,

〈ηp|U2|ηp〉 = 1

4
(cosh |p| sinh |p| + cosh2 |p| + sinh2 |p| + cosh |p| sinh |p|)I2

= 1

4
(cosh |p| + sinh |p|)2I2 and

〈ηp|V 2|ηp〉 = −1

4
(cosh |p| sinh |p| − cosh2 |p| − sinh2 |p| + cosh |p| sinh |p|)I2

= 1

4
(cosh |p| − sinh |p|)2I2.

Hence

〈�U〉2〈�V 〉2 = 1

16
(cosh2 |p| − sinh2 |p|)2I2 = 1

16
I2 (3.18)

and therefore

〈�U〉〈�V 〉 = 1

4
I2, (3.19)

while 〈�U〉 �= 〈�V 〉, an exact analogue of the complex case [10]. Hence, the class
of ideally squeezed states with respect to the operators U, V contains the set of
quaternionic pure squeezed states.

Using the relation (iii) in Proposition 3.6 we obtain the mean photon number

〈N〉 = 〈ηp|N |ηp〉 = 〈�0|S(p)†NS(p)�0〉 = sinh2 |p|I2. (3.20)

Also using
〈ηp|N2|ηp〉 = 〈�0|S(p)†NS(p)S(p)†NS(p)�0〉

we get

〈N2〉 = 〈�0|S(p)†NS(p)S(p)†NS(p)�0〉
= (sinh4 |p| + 2 sinh2 |p| cosh2 |p|)I2
= 3 sinh4 |p| + 2 sinh2 |p|I2.

Hence the variance is

〈�N〉2 = 〈N2〉 − 〈N〉2 = 2 sinh2 |p|(1 + sinh2 |p|)I2. (3.21)

The photon number variance is also described by Mandel’s Q-parameter. The Mandel
parameter is [10, 14]

QM = 〈�N〉2
〈N〉 − 1

= 2 sinh2 |p|(1 + sinh2 |p|)
sinh2 |p| I2 − I2

= (1 + 2 sinh2 |p|)I2 = 2〈N〉 + I2.
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Since QM > 0 (as a positive definite matrix) the photon number probability
distribution is super-Poissonian. (QM = 0 Poissonian and QM < 0 sub-Poissonian).

3.6.2 The Pure Squeezed States with Anti-Normal Ordering of S (p)

Even though in order to compute the expectation values and variances the relations
in Proposition 3.6 are enough, let us give an expression for the pure squeezed states
with the anti-normal ordering of the operator S(p).

ηa
p = S(p)�0

= e
1
2 [C,D]e−DeC�0

= e
1
2 [C,D]e−D

∞∑
m=0

(p · (a†)2)m

2mm! �0

= e
1
2 [C,D]e−D

∞∑
m=0

pm
√

(2m)!
2mm! · �2m

= e
1
2 [C,D]

∞∑
m=0

∞∑
n=0

pm
√

(2m)!
2mm!

p
na2n

2nn! · �2m

= e
1
2 [C,D]

∞∑
m=0

m∑
n=0

pm
√

(2m)!
2mm!

√
(2m)!

(2m − 2n)!
p
n

2nn! · �2m−2n

= e
1
2 [C,D]

∞∑
n=0

∞∑
m=n

pmp
n
(2m)!

2m+nm!n!√(2m − 2n)! · �2m−2n assuming m > n

= e
1
2 [C,D]

∞∑
n=0

∞∑
s=0

pn+sp
n
(2n + 2s)!

4n2s(n + s)!n!√(2s)! · �2s taking m − n = s

= e− 1
4 |p|2

∞∑
n=0

∞∑
s=0

pn+sp
n
(2n + 2s)!

4n2s(n + s)!n!√(2s)!e
−s|p|2 · �2s .

3.7 Right Quaternionic Squeezed States

In view of Prop. 2.2(f), for a basis vector q · �n = �nq, therefore we write the
canonical CS as

ηq = D(q)�0 = e−|q|2/2
∞∑

n=0

�n

qn

√
n! .

Let S(p)�n = �p
n , where the set {�n | n = 0, 1, 2, · · · } is the basis of the

Fock space of regular Bargmann space HB
r . Since S(p) is a unitary operator, the set

{�p
n | n = 0, 1, 2, · · · } is also form an orthonormal basis for HB

r . That is

〈�p
m|�p

n〉 = δmn. (3.22)
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Now the squeezed states are

η
p
q = S(p)D(q)�0 = S(p)ηq = e−|q|2/2

∞∑
n=0

�p
n

qn

√
n! . (3.23)

Since the canonical CS are normalized, that is 〈ηq|ηq〉 = 1, and the squeeze operator
S(p) is unitary, we have

〈ηpq|ηpq〉 = 〈S(p)ηq|S(p)ηq〉 = 〈ηq|ηq〉 = 1.

That is, the squeezed states are normalized. The dual vector of |S(p)ηq〉 is 〈ηqS(p)†|.
Therefore, from the resolution of the identity of the canonical CS,∫

H

|ηq〉〈ηq|dζ(r, θ, φ, ψ) = IHB
r

we get ∫
H

|S(p)ηq〉〈ηqS(p)†|dζ(r, θ, φ, ψ) = S(p)IHB
r
S(p)† = IHB

r
.

That is the squeezed states satisfy the resolution of the identity,∫
H

|ηpq〉〈ηpq|dζ(r, θ, φ, ψ) = IHB
r
.

Remark 3.9 Since the operators D(p) and S(q) are unitary operators the two photon
states D(p)S(q)�0 are normalized but, for the same reason as for the pure squeezed
states, these states cannot hold a resolution of the identity in the space HB

r . Further,
technically, a series expansion for the states S(p)D(q)�0 and D(p)S(q)�0 can be
obtained. However, it is rather complicated and not necessary (even in the complex
case).

In the complex case, combining the results in the Propositions 3.4 and 3.6 (cor-
responding complex case) one can obtain a relation for the operators, for z, ξ ∈
C,

S(ξ)†D(z)†aD(ξ)S(z) and S(ξ)†D(z)†a†D(ξ)S(z)

or for the operators

D(ξ)†S(z)†aS(z)D(ξ) and D(ξ)†S(z)†a†S(z)D(ξ)

and use them to compute the expectation values and variances of all the required
operators. Since quaternions do not commute such relations cannot be obtained for
quaternions. For example, if we combine the Propositions 3.4 and 3.6, when p =
|p|eiθσ (n̂) let Ip = eiθσ (n̂),

D(q)†S(p)†aS(p)D(q) = D(q)†
[
(cosh |p|)a + Ip sinh |p| · a†

]
D(q)

= cosh |p|D(q)†aD(q) + sinh |p|D(q)†Ip · a†D(q).

Since D(q)†Ip · a†D(q) �= Ip · D(q)†a†D(q), the above expression cannot be com-
puted. In fact, there is no know technique in quaternion analysis to get a closed
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form for the expression D(q)†Ip · a†D(q). In this regard, even though we have
established normalized squeezed states S(p)D(q)�0 with a resolution of the iden-
tity, the corresponding expectation values and variances cannot be obtained in a
usable form. Since elements in a quaternion slice commute, if we consider squeezed
states in a quaternion slice then the computations can carry forward. From the slice-
wise analysis we may able to get to the whole set of quaternions H through direct
integrals. For such an analysis with quaternionic canonical coherent states we refer
to [16].

4 Squeezed States on a Quaternion Slice

Let CI be a quaternion slice. Since elements in CI commute we can obtain the fol-
lowing relations for squeezed coherent states and two photon coherent states, and
obtain the related expectation values. The statesD(q)S(p)�0 are called the two pho-
ton coherent states [15, 22]. On the other hand the states S(p)D(q)�0 are called the
squeezed coherent states [15] pp. 207. We shall demonstrate it briefly in this section.

4.1 Squeezed States

Let p, q ∈ CI , then we can write

p = |p|eIθp = |p|Ip = |p|(cos θp + I sin θp) and

q = |q|eIθq = |q|Iq = |q|(cos θq + I sin θq).

The normalized squeezed states are η
p
q = S(p)D(q)�0. With these notations we

obtain the following.

Proposition 4.1 The operators S(p) and D(q) satisfy the following relations.

D(q)†S(p)†aS(p)D(q) = cosh |p|aI2 + Ip sinh |p| · a† + cosh |p|qI2
+Ip sinh |p|q

D(q)†S(p)†a†S(p)D(q) = cosh |p|a†I2 + Ip sinh |p| · a + cosh |p|qI2
+Ip sinh |p|q,

D(q)†S(p)†NS(p)D(q) = cosh2 |p|(N + q · a† + q · a + |q|2)
+ 1

2
Ip sinh (2|p|) · (a2 + 2q · a + q2)

+ 1

2
Ip sinh (2|p|) · ((a†)2 + 2q · a† + q2)

+ sinh2 |p|(aa† + q · a + q · a† + |q|2).

Proof Proof is straight forward from the results of the Propositions 3.6 and 3.4.
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For a normalized squeezed state and an operator F we denote the expectation
value as 〈F 〉pq = 〈ηpq|F |ηpq〉. The following expectation values can be calculated.

〈a〉pq = cosh |p|q + Ip sinh |p|q
〈a†〉pq = cosh |p|q + Ip sinh |p|q
〈X〉pq = |q| [cosh |p| cos θq + sinh |p| cos(θp − θq)

]
〈Y 〉pq = |q| [cosh |p| sin θq + sinh |p| sin(θp − θq)

]
〈aa†〉pq = cosh2 |p| + cosh(2|p|)|q|2 + |q|2 sinh(2|p|) cos(2θq − θp)

〈a†a〉pq = sinh2 |p| + cosh(2|p|)|q|2 + |q|2 sinh(2|p|) cos(2θq − θp)

〈a2〉pq = 1

2
Ip sinh (2|p|)(1 + 2|q|2) + cosh2 |p|q2 + I 2p sinh

2 |p|q2

〈(a†)2〉pq = 1

2
Ip sinh (2|p|)(1 + 2|q|2) + cosh2 |p|q2 + I

2
p sinh

2 |p|q2.

Using the above expectations we can readily obtain the following.

〈X2〉 = 1

2

[(
cosh(2|p|) + 2|q|2 cosh(2|p|) + 2|q|2 sinh(2|p|) cos(2θq − θp)

)]

+ 1

2

[(
cos θp sinh(2|p|)(1 + 2|q|2) + 2|q|2 cosh2 |p| cos(2θq) + 2|q|2 sinh2 |p| cos(2θp − 2θq)

)]

and

〈Y 2〉 = 1

2

[(
cosh(2|p|) + 2|q|2 cosh(2|p|) + 2|q|2 sinh(2|p|) cos(2θq − θp)

)]

− 1

2

[(
cos θp sinh(2|p|)(1 + 2|q|2) + 2|q|2 cosh2 |p| cos(2θq) + 2|q|2 sinh2 |p| cos(2θp − 2θq)

)]
.

Using these expectation values the variances of X and Y can be obtained.

4.2 Two Photon Coherent States

The two photon coherent states are defined as η
q
p = D(q)S(p)�0 [10, 15]. We briefly

provide some formulas for these states. Once again we are in a quaternion slice CI

and p and q are as in the previous section.

Proposition 4.2

S†(p)D(q)†aD(q)S(p) = cosh |p| a + Ip sinh p a† + q

S†(p)D(q)†a†D(q)S(p) = cosh |p| a† + Ip sinh p a + q

S†(p)D(q)†a†aD(q)S(p) = cosh2 |p| a†a + 1

2
Ip sinh(2|p|) (a†)2 + q cosh |p| a†

+ 1

2
Ip sinh(2|p|) a2 + sinh2 |p| aa† + Ipq sinh |p| a

+ q cosh |p| a + Ipq sinh |p| a† + |q|2.



    8 Page 22 of 26 Math Phys Anal Geom            (2020) 23:8 

Proof Proof is straight forward from Propositions 3.6 and 3.4.

With the aid of the above proposition we can easily calculate the following.

〈a〉qp = q

〈a†〉qp = q

〈N〉qp = sinh2 |p| + |q|2
〈X〉qp = |q| cos θq

〈Y 〉qp = |q| sin θq

〈a2〉qp = 1

2
Ip sinh(2|p|) + q2

〈(a†)2〉qp = 1

2
Ip sinh(2|p|) + q2

〈aa†〉qp = cosh2 |p| + |q|2.

Hence, using the above, we can calculate the following.

〈X2〉qp = 1

4

{
cosh(2|p|) + 2|q|2 + sinh(2|p|) cos θp + 2|q|2 cos(2θq)

}
,

〈Y 2〉qp = 1

4

{
cosh(2|p|) + 2|q|2 − sinh(2|p|) cos θp − 2|q|2 cos(2θq)

}

and

〈N2〉qp = 1

2
sinh2(2|p|) + sinh4 |p| + 2|q|2 sinh2 |p| + |q|2 cosh(2|p|)

+|q|2 sinh(2|p|) + |q|4.
Further

〈�N〉2qp = 1

2
sinh2(2|p|) + |q|2 cosh(2|p|) + |q|2 sinh(2|p|)

= 1

2
sinh2(2|p|) + |q|2e2|p|.

For a normalized state η
q
p, in terms of the quadrature operator X, the signal-to-noise

ratio and the Mandel parameter are, respectively, defined as (see [10])

SNR = 〈X〉2qp
〈�X〉2qp

and QM = 〈�N〉qp
〈N〉qp − 1.

Using the above expectation values one can easily obtain these quantities.

Proposition 4.3 The operator S(p) satisfies the disentanglement formula

S(p) = ep·K+−p̄·K− = eq·K+e−2 log(cosh(2r))K0e−q̄·K−

where p = rσ0e
iθσ (n̂) = reiθσ (n̂), q = tanh(r)eiθσ (n̂).
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Proof To show the statement we look for α, β, γ ∈ H such that α, β, γ mutually
commuting, namely they belong to the same slice, such that the formula

ep·K+−p̄·K− = eα·K+eβ·K0eγ ·K− (4.1)

holds. We set A = p ·K+ − p̄ ·K− and using the Baker-Campbell-Hausdorff formula
we compute eAK0e

−A. We have that

[A, K0] = −(p · K+ + p̄ · K−),

[A, [A, K0]] = 22|p|2K0

[A, [A, [A, K0]]] = −4|p|2(p · K+ + p̄ · K−)

[A, [A, [A, [A, K0]]]] = 24|p|4K0

[A, [A, [A, [A, [A, K0]]]]] = −24|p|4K0(p · K+ + p̄ · K−)

............

from which we deduce

eAK0e
−A = − sinh(2r)(eiθσ (n̂) · K+ + e−iθσ (n̂) · K−) + cosh(2r)K0. (4.2)

We note that the computations mimic the analogous computations in the classical
case, since K+, K−, K0 belong to su(1, 1), the quaternionic variables behaves like
a variable commuting with the operators with respect to the left multiplication and
the various quaternionic variables are assumed to be mutually commuting. Thus,
reasoning as in the classical case, one obtains

eAK−e−A = sinh2(r)ei2θσ (n̂) · K+ + cosh2(r)K− − sinh(2r)eiθσ (n̂) · K0. (4.3)

Let us denote byB the operator on the right hand side of formula (4.1) and let us com-
pute BK0B

−1 and BK−B−1. To compute the first one we start first by computing
eα·K+K0e

−α·K+ . A standard computation shows that

eγ ·K−K0e
−γ ·K− = γ · K−.

Then one computes eβ·K0(γ · K−)e−β·K0 and finally eα·K+ . The result is

BK0B
−1 = (1 − 2αγ e−β) · K0 + γ e−β · K− − α(1 − e−βαγ ) · K+. (4.4)

Reasoning in a similar way, and basically using the same computations as in the
classical case, we obtain

BK−B−1 = −2αe−β · K0 + e−β · K− + e−βα2 · K+ (4.5)

By comparing the coefficients obtained in (4.2), (4.3) and in (4.4), (4.5) one obtains
α = eiθσ (n̂) tanh(r), β = −2 log(cosh(r)), γ = −e−iθσ (n̂) tanh(r) and the statement
follows.

We will need the above disentanglement formula to realize the connection between
squeezed states and Hermite polynomials in a quaternion slice. The quaternionic
Hermite polynomials are given by

Hn(q) = n!
[n/2]∑
m=0

(−1)m(2q)n−2m

m!(n − 2m)! , for all q ∈ H. (4.6)



    8 Page 24 of 26 Math Phys Anal Geom            (2020) 23:8 

The following Proposition connects the squeezed states to Hermite polynomials
in a quaternion slice that the squeezed basis vectors are essentially the Hermite
polynomials times an exponential function.

Proposition 4.4 For any p ∈ CI with p �= 0,

r = tanh(|p|)
|p| p, (4.7)

then the squeezed basis vector, in the Bargmann analytic (in CI ) representation are
given in terms of the complex Hermite polynomials by the expression,

�p
n(q) = (S(p)�n)(q) = 1√

n! (1 − |r|2) 1
4

[
r

2

] n
2

e
r
2q

2
Hn

([
1

2
(1 − |r|2)r−1

] 1
2

q

)
.

(4.8)

Proof We have, from (4.7), log(1−|r|2) = −2 log cosh |r|. So the above Proposition
(4.3) enables us to write the squeeze operator S(p) as

S(p) = e
r
2q

2
e
1
2 log(1−|r|2)(q∂s+ 1

2 I
HB

r
)
e− r

2 ∂2s . (4.9)

Now the basis vector �n(q) = qn

√
n! . Further left slice regular derivative of a regular

function is regular, and for {am} ⊆ H, we have, for a right regular power series (see,
for example [19]),

∂s

( ∞∑
m=0

amq
m

)
=

∞∑
m=0

mamq
m−1. (4.10)

Thus, by doing a right regular power series expansion, we easily obtain,

e− r
2 ∂2s �n(q) = e− r

2 ∂2s

(
qn

√
n!

)
= n!

[n/2]∑
m=0

(−1)m
(
r
2

)m

(q)n−2m

m!(n − 2m)! . (4.11)

One can note that, for any integer k, since q∂sq
k = kqk ,

e
1
2 log(1−|r|2)(q∂s+ 1

2 I
HB

r
)
qk = (

√
1 − |r|2)k+ 1

2 qk . (4.12)

Combining (4.9)–(4.12), and noting (4.6), the result (4.8) follows.

5 Conclusion

Using the left multiplication on a right quaternionic Hilbert space we have defined
unitary squeeze operator. Pure squeezed states have been obtained, with all the
desired properties, analogous to their complex counterpart. Even though we have
defined squeezed states with the aid of displacement operator and the squeeze opera-
tor, on the whole set of quaternions, the non-commutativity of quaternions prevented
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us in getting desired expectation values and variances. Even though it is a techni-
cal issue, there is no known technique developed yet to overcome this difficulty. In
this regard, the only way out of this difficulty is to consider quaternionic slice-wise
approach. We have defined squeezed states on quaternion slices and computed the
expectation values of the quadrature operators. We have also proved a quaternionic
disentanglement formula.

In the application point of view squeezed states have several applications, par-
ticularly in coding and transmission of information through optical devices. These
aspects are well explained for example in [3, 10, 22] and the many references therein.
Since we have used the matrix representation of quaternions, the squeezed states
obtained in this note appear as matrix states. Further these states involve all four
variables of quaternions. These features may give advantages in applications.
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