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Abstract. In a right quaternionic Hilbert space, for a bounded right lin-
ear operator, the Kato S-spectrum is introduced and studied to a certain
extent. In particular, it is shown that the Kato S-spectrum is a non-
empty compact subset of the S-spectrum and it contains the boundary
of the S-spectrum. Using right-slice regular functions, local S-spectrum,
at a point of a right quaternionic Hilbert space, and the local spectral
subsets are introduced and studied. The S-surjectivity spectrum and its
connections to the Kato S-spectrum, approximate S-point spectrum and
local S-spectrum are investigated. The generalized Kato S-spectrum is
introduced and it is shown that the generalized Kato S-spectrum is a
compact subset of the S-spectrum.
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1. Introduction

In complex spectral theory, the spectrum of a bounded linear operator on a
Hilbert space or Banach space can be divided into several subsets depending
on the purpose of the investigation. Further, some of these subsets can also
be expressed and analyzed in terms of the local spectrum at a point of the
Hilbert space or Banach space. The local spectral theory is closely linked to
vector-valued analytic functions. As one of these subsets, the so-called Kato
spectrum was first introduced by Apostol for bounded linear operators on a
Hilbert space [5], and then investigated by several authors on Banach spaces.
The Kato spectrum has close link to surjectivity spectrum and approximate
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point spectrum under certain assumptions. For a detailed account on the
complex theory see [2,6,21], and the many references therein.

In the complex setting, in a complex Hilbert space H, for a bounded
linear operator, A, the spectrum is defined as the set of complex numbers λ
for which the operator Qλ(A) = A − λIH, where IH is the identity operator
on H, is not invertible. In the quaternionic setting, let V R

H
be a separable

right quaternionic Hilbert space, A be a bounded right linear operator, and
Rq(A) = A2 − 2Re(q)A + |q|2IV R

H

, with q ∈ H, the set of all quaternions,
be the pseudo-resolvent operator. The S-spectrum is defined as the set of
quaternions q for which Rq(A) is not invertible. In the complex case various
classes of spectra, such as approximate point spectrum, essential spectrum,
Weyl spectrum, Browder spectrum, Kato spectrum, surjectivity spectrum
etc. are defined by placing restrictions on the operator Qλ(A) [2,20,21]. In
this regard, in the quaternionic setting, in order to define similar classes of
spectra it is natural to place the same restrictions to the operator Rq(A).

Due to the non-commutativity, in the quaternionic case there are three
types of Hilbert spaces: left, right, and two-sided, depending on how vectors
are multiplied by scalars. This fact can entail several problems. For example,
when a Hilbert space H is one-sided (either left or right) the set of linear
operators acting on it does not have a linear structure. Moreover, in a one
sided quaternionic Hilbert space, given a linear operator A and a quaternion
q ∈ H, in general we have that (qA)† �= qA† (see [1,24] for details). These
restrictions can severely prevent the generalization to the quaternionic case of
results valid in the complex setting. Even though most of the linear spaces are
one-sided, it is possible to introduce a notion of multiplication on both sides
by fixing an arbitrary Hilbert basis of H. This fact allows to have a linear
structure on the set of linear operators, which is a minimal requirement to
develop a full theory [22,23]. However, in this manuscript, all quaternionic
Hilbert spaces V R

H
are considered as separable, and we develop the theory on

V R
H

without introducing a left multiplication on it.
As far as we know, the local S-spectral theory, Kato S-spectrum and

the surjectivity S-spectrum have not been studied in the quaternionic setting
yet. In this regard, in this note we investigate these spectra in the quater-
nionic setting. The surjectivity S-spectrum has close connection with the
approximate S-point spectrum, the local S-spectrum and Kato S-spectrum.
In the complex case, the local spectrum, at a point in H, is defined in terms of
operator-valued analytic functions [2,21]. There have been several attempts
to define analyticity in the quaternionic setting by mimicking the complex
setting [7]. However, the most promising, and recent attempt was the slice-
regularity, that is, the slice-regular functions are the quaternionic counterpart
of the complex analytic functions [11,15–18,26]. In this regard, we define the
local S-spectrum in terms of slice-regular functions.

Apart from the non-commutativity of quaternions, due to the structure
of the operator Rq(A) we have experienced severe difficulties in extending
several results valid in the complex setting to quaternions. For example, for
λ, μ ∈ C, Qλ(A) = Qμ(A) − (λ − μ)IH and this equality plays an important
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role in proofs of several local spectral results [2,21]. Unfortunately, a sim-
ilar equality, in a satisfactory way, could not be obtained for the operator
Rq(A) by us. Even if we restrict Rq(A) to a complex slice within quater-
nions Qλ(A) �= Rλ(A), therefore, we cannot expect all the results valid in the
complex setting to hold for quaternions. However, by imposing additional
conditions analogous results may be obtained.

The article is organized as follows. In Sect. 2 we introduce the set of
quaternions, quaternionic Hilbert spaces and their bases, and slice-regularity
as needed for the development of this article, which may not be familiar to a
broad range of audience. In Sect. 3 we define and investigate, as needed, right
linear operators and their properties. In Sect. 3.1 we deal with the S-spectrum
and its major partitions. In Sect. 4 we study the surjectivity S-spectrum and
its connection to approximate S-point spectrum and to the S-spectrum. We
also characterize the S-spectrum in terms of the spectral radius and the
lower bound of a bounded right linear operator. In Sect. 5 we study hyper-
kernel, hyper range, semi-regular operators, algebraic core and analytic core
of an operator. The proofs of most of the results in this section follow its
complex counterpart. In this respect we give references for complex proofs. In
Sect. 6 we study local S-spectrum, local S-spectral subspaces and the single-
valued extension property (SVEP) (see Definition 6.1). In particular, we show
that when a quaternionic right linear operator A has SVEP then the S-
surjectivity spectrum coincides with the S-spectrum while if its adjoint A† has
SVEP then S-approximate point spectrum coincides with the S-spectrum.
In Sect. 7 we introduce and study the Kato S-spectrum. In particular, we
show that the Kato S-spectrum is a compact subset of the S-spectrum and
it contains the boundary of the S-spectrum. We also examine connections
between Kato S-spectrum and the S-surjectivity and S-approximate point
spectra. It is also shown that if operators A and A† have SVEP then the
Kato S-spectrum coincides with the S-spectrum. In Sect. 8 we introduce the
generalized Kato decomposition, generalized Kato S-spectrum and essentially
semi-regular S-spectrum. In particular, we show that generalized Kato S-
spectrum and essentially semi-regular S-spectrum are compact subsets of
the S-spectrum. Section 9 ends the manuscript with a conclusion.

2. Mathematical Preliminaries

In order to make the paper self-contained, we recall some facts about quater-
nions which may not be well-known. For details we refer the reader to
[1,11,15,27].

2.1. Quaternions

Let H denote the field of all quaternions and H
∗ the group (under quaternionic

multiplication) of all invertible quaternions. A general quaternion can be
written as

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R,



   40 Page 4 of 33 K. Thirulogasanthar, B. Muraleetharan Adv. Appl. Clifford Algebras

where i, j,k are the three quaternionic imaginary units, satisfying i2 = j2 =
k2 = −1 and ij = k = −ji, jk = i = −kj, ki = j = −ik. The quaternionic
conjugate of q is

q = q0 − iq1 − jq2 − kq3,

while |q| = (qq)1/2 denotes the usual norm of the quaternion q. If q is a

non-zero element, it has the inverse q−1 =
q

|q|2 . Finally, the set

S = {I = x1i + x2j + x3k | x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1},

contains all the elements whose square is −1. It is a 2-dimensional sphere in
H.

2.2. Quaternionic Hilbert Spaces

In this subsection we discuss right quaternionic Hilbert spaces. For more
details we refer the reader to [1,15,27].

2.2.1. Right Quaternionic Hilbert Space. Let V R
H

be a vector space under
right multiplication by quaternions. For φ, ψ, ω ∈ V R

H
and q ∈ H, the inner

product

〈· | ·〉V R
H

: V R
H

× V R
H

−→ H

satisfies the following properties

(i) 〈φ | ψ〉V R
H

= 〈ψ | φ〉V R
H

(ii) ‖φ‖2
V R
H

= 〈φ | φ〉V R
H

> 0 unless φ = 0, a real norm
(iii) 〈φ | ψ + ω〉V R

H

= 〈φ | ψ〉V R
H

+ 〈φ | ω〉V R
H

(iv) 〈φ | ψq〉V R
H

= 〈φ | ψ〉V R
H

q

(v) 〈φq | ψ〉V R
H

= q〈φ | ψ〉V R
H

where q stands for the quaternionic conjugate. It is always assumed that
the space V R

H
is complete under the norm given above and separable. Then,

together with 〈· | ·〉 this defines a right quaternionic Hilbert space. Quater-
nionic Hilbert spaces share many of the standard properties of complex
Hilbert spaces. All the spaces considered in this manuscript are right quater-
nionic Hilbert spaces.

The field of quaternions H itself can be turned into a left quaternionic
Hilbert space by defining the inner product 〈q | q′〉 = qq′ or into a right
quaternionic Hilbert space with 〈q | q′〉 = qq′.

Proposition 2.1. [16] For any non-real quaternion q ∈ H \ R, there exist, and
are unique, x, y ∈ R with y > 0, and I ∈ S such that q = x + yI.

Definition 2.2. (Slice-regular functions [12,16,18] Let Ω be a domain in H. A
real differentiable (i.e., with respect to x0 and the xi, i = 1, 2, 3) operator-
valued function f : Ω −→ V R

H
is said to be slice right regular if, for every

quaternion I ∈ S, the restriction of f to the complex plane LI = R + IR

passing through the origin, and containing 1 and I, has continuous partial
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derivatives (with respect to x and y, every element in LI being uniquely
expressible as x + yI) and satisfies

∂If(x + yI) :=
1
2

(
∂fI(x + yI)

∂x
+

∂fI(x + yI)
∂y

I

)
= 0 , (2.1)

where fI = f |Ω∩LI
.

With this definition all monomials of the form φqn, φ ∈ V R
H

, n ∈ N,
are slice right regular. Since regularity respects addition, all polynomials of
the form f(q) =

∑n
i=0 φiq

i, with φi ∈ V R
H

, are slice right regular. Further,
an analog of Abel’s theorem guarantees convergence of appropriate infinite
power series.

Definition 2.3. [12] Let f : Ω ⊆ H −→ V R
H

and q = x + yI ∈ Ω. If q is not
real then we say that f admits right-slice derivative in a non-real point q if

∂Sf(q) = lim
p→q,p∈LI

(fI(p) − fI(q))(p − q)−1

exists and finite for any I ∈ S.

Under the above definition the slice derivative of a regular function is
regular. For φn ∈ V R

H
we have

∂S

( ∞∑
n=0

φnq
n

)
=

∞∑
n=1

nφnq
n−1. (2.2)

The following theorem gives the quaternionic version of holomorphy via a
Taylor series. Let BH(0, r) be an open ball in H, of radius r > 0 and center
at 0.

Theorem 2.4. [12,17] A function f : BH(0, r) −→ V R
H

is right regular if and
only if it has a series expansion of the form

f(q) =
∞∑

n=0

1
n!

∂nf

∂xn
(0)qn

converging on BH(0, r).

Remark 2.5. In general slice-regular functions are not continuous [18]. How-
ever, under certain assumptions slice continuity can be obtained, see Defi-
nition 2.7 in [13], and even it can be assumed if necessary [12,13]. In this
regard, in this manuscript, we assume continuity for a right regular function
wherever needed and still call them simply right regular function.

3. Right Quaternionic Linear Operators and Some Basic
Properties

In this section we shall define right H-linear operators and recall some basic
properties. Most of them are very well known. In this manuscript, we follow
the notations in [3,15]. We shall also recall some results pertinent to the
development of the paper.
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Definition 3.1. A mapping A : V R
H

−→ UR
H

is said to be right H-linear oper-
ator or, for simplicity, right linear operator, if

A(φq + ψp) = (Aφ)q + (Aψ)p, if φ, ψ ∈ V R
H

and q, p ∈ H.

The set of all right linear operators from V R
H

to UR
H

will be denoted by
L(V R

H
, UR

H
) and the identity linear operator on V R

H
will be denoted by IV R

H

.
For a given A ∈ L(V R

H
, UR

H
), the range and the kernel will be

ran(A) = {ψ ∈ UR
H

| Aφ = ψ for φ ∈ V R
H

}
ker(A) = {φ ∈ V R

H
| Aφ = 0}.

We call an operator A ∈ L(V R
H

, UR
H

) bounded (or continuous) if

‖A‖ = sup
‖φ‖

V R
H

=1

‖Aφ‖UR
H

< ∞, (3.1)

or equivalently, there exist K ≥ 0 such that ‖Aφ‖UR
H

≤ K‖φ‖V R
H

for all
φ ∈ V R

H
. The set of all bounded right linear operators from V R

H
to UR

H
will

be denoted by B(V R
H

, UR
H

). The set of all bounded right linear operators from
V R
H

to V R
H

will be denoted by B(V R
H

). Set of all invertible bounded right linear
operators from V R

H
to UR

H
will be denoted by G(V R

H
, UR

H
). We also denote for

a set Δ ⊆ H, Δ∗ = {q | q ∈ Δ}.
Assume that V R

H
is a right quaternionic Hilbert space, A is a right linear

operator acting on it. Then, there exists a unique linear operator A† such that

〈ψ | Aφ〉UR
H

= 〈A†ψ | φ〉V R
H

; for all φ ∈ D(A), ψ ∈ D(A†), (3.2)

where the domain D(A†) of A† is defined by

D(A†) = {ψ ∈ UR
H

| ∃ϕ such that 〈ψ | Aφ〉UR
H

= 〈ϕ | φ〉V R
H

}.

The following theorem gives two important and fundamental results about
right H-linear bounded operators which are already appeared in [15] for the
case of V R

H
= UR

H
. Point (b) of the following theorem is known as the open

mapping theorem.

Theorem 3.2. [25] Let A : V R
H

−→ UR
H

be a right H-linear operator. Then
(a) A ∈ B(V R

H
, UR

H
) if and only if A is continuous.

(b) if A ∈ B(V R
H

, UR
H

) is surjective, then A is open. In particular, if A is
bijective then A−1 ∈ B(V R

H
, UR

H
).

Proposition 3.3. [15,25] Let A ∈ B(V R
H

, UR
H

). Then

(a) ran(A)⊥ = ker(A†).
(b) ker(A) = ran(A†)⊥.
(c) ker(A) is closed subspace of V R

H
.

Proposition 3.4. [15] If A ∈ B(V R
H

), then A† ∈ B(V R
H

), ‖A‖ = ‖A†‖ and
‖A†A‖ = ‖A‖2.

Definition 3.5. [2] An operator A ∈ B(V R
H

) is said to be bounded below if A
is injective and has closed range.
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Proposition 3.6. A ∈ B(V R
H

) is bounded below if and only if there exists K >
0 such that ‖Aφ‖ ≥ K‖φ‖ for all φ ∈ V R

H
.

Proof. A proof follows exactly as a complex proof. For a complex proof see
[2], page 15. �

Proposition 3.7. Let A ∈ B(V R
H

). Then A2 is bounded below if and only if A
is bounded below (hence An is bounded below for any n ∈ N if and only if A
is bounded below).

Proof. Suppose A is bounded below. Then ker(A) = {0} and A(V R
H

) is closed.
Since ker(A2) ⊆ ker(A) and the image of a closed set under continuous map
is closed, A2 is bounded below. Conversely, suppose A2 is bounded below.
Then ker(A2) = {0} and A2(V R

H
) is closed. Let φ ∈ V R

H
and A(φ) = 0, then

A2(φ) = A(0) = 0 thus φ = 0, and hence A is injective. Let {φn} ⊆ A(V R
H

)
such that φn −→ φ as n → ∞, then A(φn) −→ A(φ) as n → ∞. Therefore
A(φ) ∈ A2(V R

H
) and hence φ ∈ A(V R

H
). Therefore, A(V R

H
) is closed. �

Theorem 3.8. [25] (Bounded inverse theorem) Let A ∈ B(V R
H

, UR
H

), then the
following statements are equivalent.
(a) A has a bounded inverse on its range.
(b) A is bounded below.
(c) A is injective and has a closed range.

Proposition 3.9. [25] Let A ∈ B(V R
H

, UR
H

), then ran(A) is closed in UR
H

if and
only if ran(A†) is closed in V R

H
.

Proposition 3.10. Let A,B ∈ B(V R
H

). Assume that AB = BA. Then AB is
invertible if and only if both A and B are invertible.

Proof. A proof follows its complex counterpart. For a complex proof see [14],
page 213. �

Definition 3.11. [21] Let A ∈ B(V R
H

). A closed subspace M ⊆ V R
H

is said to
be A-invariant if A(M) ⊆ M , where A(M) = {Aφ | φ ∈ M}. It is said to be
A-hyperinvariant if B(M) ⊆ M for every B ∈ B(V R

H
) that commutes with A.

If A ∈ B(V R
H

), in order to be compatible with the inner product in V R
H

,
the scalar multiplication of A is defined as

(qA)(φ) = A(φ)q, q ∈ H.

Note that the operator qA obtained by scalar multiplication is not H-linear
in general, if q /∈ R.

3.1. S-Spectrum

For a given right linear operator A : V R
H

−→ V R
H

and q ∈ H, we define the
operator Rq(A) : D(A2) −→ H by

Rq(A) = A2 − 2Re(q)A + |q|2IV R
H

,

where q = q0 + iq1 + jq2 + kq3 is a quaternion, Re(q) = q0 and |q|2 =
q2
0 + q2

1 + q2
2 + q2

3 .



   40 Page 8 of 33 K. Thirulogasanthar, B. Muraleetharan Adv. Appl. Clifford Algebras

In the literature, the operator is called pseudo-resolvent since it is not
the resolvent operator of A but it is the one related to the notion of spectrum
as we shall see in the next definition. For more information, on the notion
of S-spectrum the reader may consult e.g. [8,9,11,12,15]. In this setting, for
q ∈ H, we can easily see that

Rq(A)=A2 − 2Re(q)A+|q|2=(A − qIV R
H

)(A − qIV R
H

)=(A − qIV R
H

)(A − qIV R
H

),

where Rq(A) is linear in V R
H

while A − qIV R
H

and A − qIV R
H

are not linear in
V R
H

.

Definition 3.12. Let A : V R
H

−→ V R
H

be a right linear operator. The S-
resolvent set (also called spherical resolvent set) of A is the set ρS(A) (⊂ H)
such that the three following conditions hold true:
(a) ker(Rq(A)) = {0}.
(b) ran(Rq(A)) is dense in V R

H
.

(c) Rq(A)−1 : ran(Rq(A)) −→ D(A2) is bounded.
The S-spectrum (also called spherical spectrum) σS(A) of A is defined by
setting σS(A) := H � ρS(A). For a bounded linear operator A we can write
the resolvent set as

ρS(A) = {q ∈ H | Rq(A) ∈ G(V R
H

)}
= {q ∈ H | Rq(A) has an inverse in B(V R

H
)}

= {q ∈ H | ker(Rq(A)) = {0} and ran(Rq(A)) = V R
H

}
and the spectrum can be written as

σS(A) = H \ ρS(A)

= {q ∈ H | Rq(A) has no inverse in B(V R
H

)}
= {q ∈ H | ker(Rq(A)) �= {0} or ran(Rq(A)) �= V R

H
}.

The spectrum σS(A) decomposes into three major disjoint subsets as follows:
(i) the spherical point spectrum of A:

σpS(A) := {q ∈ H | ker(Rq(A)) �= {0}}.
(ii) the spherical residual spectrum of A:

σrS(A) := {q ∈ H | ker(Rq(A)) = {0}, ran(Rq(A)) �= V R
H

}.

(iii) the spherical continuous spectrum of A:

σcS(A) := {q ∈ H | ker(Rq(A)) = {0}, ran(Rq(A)) = V R
H

, Rq(A)−1 /∈ B(V R
H

) }.

If Aφ = φq for some q ∈ H and φ ∈ V R
H

� {0}, then φ is called an eigenvector
of A with right eigenvalue q. The set of right eigenvalues coincides with the
point S-spectrum, see [15], Proposition 4.5.

Note also that the function q → Rq(A) is continuous and Rq(A)−1 is
continuous on ρS(A) [12].

Proposition 3.13. [10,15] For A ∈ B(V R
H

), the resolvent set ρS(A) is a non-
empty open set and the spectrum σS(A) is a non-empty compact set.
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Remark 3.14. For A ∈ B(V R
H

), since σS(A) is a non-empty compact set so is
its boundary. That is, ∂σS(A) = ∂ρS(A) �= ∅.

4. Surjectivity S-Spectrum and Approximate S-Point
Spectrum

Following the complex case, for A ∈ B(V R
H

), the approximate S-point spec-
trum was studied in [25]. We recall the definition and some results from [25]
as needed here. Then we define and study the surjectivity S-spectrum, in
the quaternionic setting, following its complex counterpart. For the theory of
complex surjectivity spectrum we refer the reader to [2,21].

Definition 4.1. [25] Let A ∈ B(V R
H

). The approximate S-point spectrum of A,
denoted by σS

ap(A), is defined as

σS
ap(A) = {q ∈ H | there is a sequence {φn}∞

n=1 such that ‖φn‖
= 1 and ‖Rq(A)φn‖ −→ 0}.

Proposition 4.2. [25] Let A ∈ B(V R
H

), then σpS(A) ⊆ σS
ap(A).

Proposition 4.3. [25] If A ∈ B(V R
H

) and q ∈ H, then the following statements
are equivalent.

(a) q �∈ σS
ap(A).

(b) ker(Rq(A)) = {0} and ran(Rq(A)) is closed.
(c) There exists a constant c ∈ R, c > 0 such that ‖Rq(A)φ‖ ≥ c‖φ‖ for all

φ ∈ D(A2).

Theorem 4.4. [25] Let A ∈ B(V R
H

), then σS
ap(A) is a non-empty closed subset

of H and ∂σS(A) ⊆ σS
ap(A), where ∂σS(A) is the boundary of σS(A).

Theorem 4.5. [25] Let A ∈ B(V R
H

) and q ∈ H, then the following statements
are equivalent.

(a) q �∈ σS
ap(A).

(b) ran(Rq(A†)) = V R
H

.

Proposition 4.6. [25] If A ∈ B(V R
H

), then ∂σS(A) ⊆ σS
ap(A) ∩ σS

ap(A
†)∗.

Following the complex formalism in the following we define the S-
compression spectrum for an operator A ∈ B(V R

H
).

Definition 4.7. The spherical compression spectrum of an operator A ∈
B(V R

H
), denoted by σS

c (A), is defined as

σS
c (A) = {q ∈ H | ran(Rq(A)) is not dense in V R

H
}.

Proposition 4.8. Let A ∈ B(V R
H

) and q ∈ H. Then,

(a) q ∈ σS
c (A) if and only if q ∈ σpS(A).

(b) σS(A) = σS
ap(A) ∪ σS

c (A).
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Proof. (a) Using the fact that ran(Rq(A)) = ran(Rq(A†)) (see e.g. Propo-
sition 2.19 in [15]), one can easily see that q ∈ σS

c (A) ⇔ ker(Rq(A))⊥ ⊆
ker(Rq(A))⊥ = ran(Rq(A†)) = ran(Rq(A)) �= V R

H
⇔ ker(Rq(A)) �= {0} ⇔

q ∈ σpS(A). The spherical point spectrum σpS(A) is circular (see e.g. [15]),
so q ∈ σpS(A) ⇔ q ∈ σpS(A). The point (b) is known (see e.g. point (c) of
Proposition 5.8. in [25]). �

Since the S-surjectivity spectrum and its connection to other parts of the
spectrum have not been addressed yet, we shall define it and study some of
its properties according to [21]. Later we shall also investigate its connection
to Kato S-spectrum and local S-spectrum.

Definition 4.9. Let A ∈ B(V R
H

). The surjectivity S-spectrum of A is defined
as

σS
su(A) = {q ∈ H | ran(Rq(A) �= V R

H
}.

Clearly we have

σS
c (A) ⊆ σS

su(A) and σS(A) = σpS(A) ∪ σS
su(A). (4.1)

The point (c) in the following Proposition is already known, see e.g. Propo-
sition 4.7 in [15]. In the following Proposition, we provide a different proof
for it.

Proposition 4.10. Let A ∈ B(V R
H

). Then A has the following properties.
(a) σpS(A) ⊆ σS

c (A†) and σS
c (A) = σpS(A†).

(b) σS
su(A) = σS

ap(A
†) and σS

ap(A) = σS
su(A†).

(c) σS(A) = σS(A†).

Proof. (a) Let q ∈ H\σS
c (A†), then ran(Rq(A†)) is dense in V R

H
. From Propo-

sition 3.3 we have ker(Rq(A)) = ran(Rq(A†))⊥. Let φ ∈ ker(Rq(A)) and let
ψ ∈ ran(Rq(A†)) = V R

H
. Then there exists a sequence {ψn} ⊆ ran(Rq(A†))

such that ψn −→ ψ as n −→ ∞. Further, since 〈φ|ψn〉 = 0 for all n, we have
〈φ|ψ〉 = 0. That is, 〈φ|ψ〉 = 0 for all ψ ∈ V R

H
, and hence φ = 0. Therefore

ker(Rq(A)) = {0} and which implies q ∈ H\σpS(A). Thus σpS(A) ⊆ σS
c (A†).

By the preceding paragraph, σps(A†) ⊆ σS
c (A). To see other inclusion,

take q /∈ σps(A†). Then ker(Rq(A†)) = ran(Rq(A))⊥ = {0}. This implies
ran(Rq(A)) = V R

H
. Thus q /∈ σS

c (A).
(b) Given any q ∈ H \ σS

su(A), we have ran(Rq(A)) = V R
H

. Since, by Propo-
sition 3.3, ran(Rq(A))⊥ = ker(Rq(A)†), we get ker(Rq(A†)) = {0}. There-
fore, by the bounded inverse theorem, Rq(A†)−1 is bounded, so Rq(A†) is
bounded below. Therefore, by Proposition 4.3, we have q ∈ H \ σS

ap(A
†),

and hence σS
ap(A

†) ⊆ σS
su(A). Conversely, let q /∈ σS

ap(A
†) then by Proposi-

tion 4.3 we have ker(Rq(A†)) = {0} and ran(Rq(A†)) is closed. Therefore,
ran(Rq(A)) = ker(Rq(A†))⊥ = {0}⊥ = V R

H
. Thus q /∈ σS

su(T ), and hence
σS

su(A) ⊆ σS
ap(A

†). All together we get σS
su(A) = σS

ap(A
†).

For the second equality, let q /∈ σS
ap(A), then by Proposition 4.3 we

have ker(Rq(A)) = {0} and ran(Rq(A)) is closed. Therefore, by Proposi-
tion 3.9, ran(Rq(A†)) is closed, and also by Proposition 3.3, V R

H
= {0}⊥ =
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ker(Rq(A))⊥ = ran(Rq(A†)). Thus q /∈ σS
su(A†), hence σS

su(A†) ⊆ σS
ap(A). For

the other inclusion, let q /∈ σS
su(A†), then ran(Rq(A†)) = V R

H
. By Proposi-

tion 3.3, ran(Rq(A†))⊥ = ker(Rq(A)) = {0}. Since ran(Rq(A†)) is closed,
by Proposition 3.9, ran(Rq(A)) is closed. Therefore, by Proposition 4.3,
q /∈ σS

ap(A), and hence σS
ap(A) ⊆ σS

su(A†). Thus σS
ap(A) = σS

su(A†).
(c) From part(b) of Proposition 4.8, above parts (a),(b) and Equation (4.1),
we get

σS(A) = σS
ap(A) ∪ σc(A) = σS

su(A†) ∪ σpS(A†) = σS(A†).

�
Proposition 4.11. For A ∈ B(V R

H
), σS

su(A) is closed and ∂σS(A) ⊆ σS
su(A).

Proof. Let A ∈ B(V R
H

), then by Proposition 3.4, A† ∈ B(V R
H

). Therefore,
by Theorem 4.4, σS

ap(A
†) is closed and ∂σS(A†) ⊆ σS

ap(A
†). By Proposi-

tion 4.10, σS
su(A) = σS

ap(A
†) and σS(A) = σS(A†). Hence σS

su(A) is closed
and ∂σS(A) ⊆ σS

su(A). �
Proposition 4.12. Let A ∈ B(V R

H
) and M , N be two closed A-invariant sub-

spaces of V R
H

such that V R
H

= M ⊕ N . Then
(a) σS

ap(A) = σS
ap(A|M ) ∪ σS

ap(A|N );
(b) σS

su(A) = σS
su(A|M ) ∪ σS

su(A|N );
(c) σS(A) = σS(A|M ) ∪ σS(A|N ).

Proof. (a) Let PM : V R
H

−→ M be the projection operator. Clearly PM

commutes with A. It is easily seen that ker(A) = ker(A|M ) ⊕ ker(A|N ) and
A(V R

H
) = A(M) ⊕ A(N). Thus, A is injective if and only if A|M and AN are

injective.
Claim: A(V R

H
) is closed if and only if A(M) and A(N) are closed in M and

N respectively.
If A(V R

H
) is closed, then A(M) = APM (V R

H
) = PM (A(V R

H
)) = A(V R

H
) ∩

M . Therefore A(M) is closed in M . Similarly A(N) is closed in N . Conversely,
assume that A(M) is closed in M and A(N) is closed in N . Since the mapping
Ψ : M × N −→ M ⊕ N defined by Ψ((φ, ψ)) = φ + ψ is a topological
isomorphism, then the image Ψ(A(M)×A(N)) = A(M)⊕A(N) = A(V R

H
) is

closed in V R
H

. Thus, combining the above results: A is bounded below if and
only if A|M and A|N are bounded below. As a consequence, Rq(A) is bounded
below if and only if Rq(A)|M and Rq(A)|N are bounded below. Hence (a) is
proved.
(b) Similarly using A(V R

H
) = A(M)⊕A(N) we can easily show that A is onto

if and only if A|M and A|N are onto. Consequently, Rq(A) is onto if and only
if Rq(A)|M and Rq(A)|N are onto, which proves (b).
(c) From the above arguments it is clear that Rq(A) is bijective if and only
if Rq(A)|M and Rq(A)|N are bijective, which proves (c). �
Proposition 4.13. [21, page 76] Let {an}n∈N be a sequence of positive real
numbers that is sub-multiplicative, in the sense that am+n ≤ aman for all
m,n ∈ N. Then

a1/n
n −→ inf{a

1/k
k | k ∈ N} as n → ∞.
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Similarly if the sequence {an}n∈N satisfies am+n ≥ aman for all m,n ∈ N,
then

a1/n
n −→ sup{a

1/k
k | k ∈ N} as n → ∞.

Remark 4.14. Let V R
H

be non-trivial and A ∈ B(V R
H

).
(a) From Proposition 4.13, the S-spectral radius rS(A) = max{|q| : q ∈

σS(A)} is

rS(A) = lim
n→∞ ‖An‖1/n = inf

n∈N

‖An‖1/n.

(b) From Proposition 4.13 we can also handle the lower bounds: if

κ(A) = inf{‖Aφ‖ | φ ∈ V R
H

with ‖φ‖ = 1}
denotes the lower bound of A, then κ(Am)κ(An) ≤ κ(Am+n) for all
m,n ∈ N.

(c) κ(A) = 0 whenever κ(An) = 0 for some n ∈ N.
(d) By Proposition 3.7, if κ(A) = 0, then 0 ∈ σS

ap(A), and hence κ(An) = 0
for all n ∈ N.

(e) If A is invertible then κ(A) = ‖A−1‖−1.
(f) Proposition 4.13 ensures the existence of the limit

i(A) = lim
n→∞ κ(An)1/n = sup

n∈N

κ(An)1/n.

It is immediate that i(A) ≤ rS(A).
(g) Let M > 0 and c > 0, and q = q0 + q1i + q2j + q3k ∈ H and also denote

βn(M, q) = (2|Re(qn)|Mn + |q|2n)
1
2n , then

c2n − 2|Re(qn)|Mn − |q|2n > 0 ⇔ c2n > 2|Re(qn)|Mn + |q|2n
⇔ c > (2|Re(qn)|Mn + |q|2n)

1
2n = βn(M, q).

Also note that βn(M, q) ≥ |q| and βn(M, q) > 0 if q �= 0.

In the following ∇H(q, r) := {p ∈ H | |q − p| ≤ r} denotes the closed
ball centered at q and radius r ≥ 0. BH(q, r) is the open ball with center q
and radius r > 0.

Proposition 4.15. Every operator A ∈ B(V R
H

) has the following properties.
(a) σS

ap(A) is contained in the spherical annulus {q ∈ H | i(A) ≤ |q| ≤
rS(A)}.

(b) If A is non-invertible, then ∇H(0, i(A)) ⊆ σS(A).
(c) If A is invertible, then BH(0, i(A)) ⊆ ρS(A).
(d) If A is non-invertible and i(A) = rS(A), then σS(A) = ∇H(0, rS(A)).
(e) If A is invertible and i(A) = rS(A), then σS(A) = {q ∈ H | |q| =

rS(A)} = ∂∇H(0, rS(A)).

Proof. (a) Let A ∈ B(V R
H

), then there exist an M > 0 such that ‖An(φ)‖ <
Mn‖φ‖, for all n ∈ N. Clearly σS

ap(A) ⊆ σS(A) ⊆ ∇(0, rS(A)). Thus, it
remains to be seen that q ∈ H with |q| < i(A) cannot belongs to σS

ap(A).
Choose a real number c > 0 and an integer n ∈ N such that cn ≤ κ(An) and
βn(M, q) < c < i(A), where βn(M, q) is as in part (g) of Remark 4.14. Note
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that, such a c can be chosen by the supremum property. Since cn ≤ κ(An),
from part (b) of Remark 4.14 c2n ≤ κ(A2n). Because c2n ≤ κ(A2n) we have

c2n‖φ‖ ≤ ‖A2nφ‖ for all φ ∈ V R
H

.

From the above we obtain

‖Rqn(An)‖ = ‖A2nφ − 2Re(qn)φ + |q|2n‖
≥ ‖A2nφ‖ − 2|Re(qn)|‖Anφ‖ − |q|2n

≥ (c2n − 2|Re(qn)|Mn − |q|2n)‖φ‖ for all φ ∈ V R
H

.

Therefore, by part (g) of Remark 4.14 and Proposition 4.3, qn /∈ σS
ap(A

n).
Now we have

Rqn(An)φ = (An − qn)(An − qn)φ

=

(
n∑

k=1

qn−kAk−1(A − q)

) ⎛
⎝ n∑

j=1

qn−jAj−1(A − q)

⎞
⎠ φ

=
n∑

k=1

n∑
j=1

(qn−kAk−1(A − q))(Ajφqn−j − Aj−1φqn−j+1)

=

n∑
k=1

n∑
j=1

qn−kAk−1(Aj+1φqn−j − Ajφqn−j+1 − Ajφqqn−j + Aj−1φqqn−j+1)

=
n∑

k=1

n∑
j=1

(Aj+kφqn−kqn−j − Aj+k−1φqn−kqn−j+1 − Aj+k−1φqn−k+1qn−j +

+Aj+k−2φqn−k+1qn−j+1)

= Rq(A)
n∑

k=1

n∑
j=1

(qn−kqn−jAj+k−2)φ.

Therefore, by Proposition 4.3 and part (g) of Remark 4.14, q /∈ σS
ap(A) for

|q| < i(A).
(b) Let q ∈ H for which |q| ≤ i(A). If q ∈ ρS(A), then, since A is not
invertible, by Proposition 3.10, 0 ∈ σS(A), and ρS(A) is open, tq ∈ ∂σS(A)
for some t ∈ [0, 1). Then, by Proposition 4.4, we have tq ∈ σS

ap(A), which
contradicts part (a) because |tq| < i(A). Hence, ∇H(0, i(A)) ⊆ σS(A).
(c) Let q ∈ H with |q| < i(A), and assume that q ∈ σS(A). Since A is invert-
ible, by Proposition 3.10, A2 is invertible, and hence 0 ∈ ρS(A). Therefore
we can have |p| ≤ |q| < i(A) for some p ∈ ∂σS(A). Hence, by Proposition 4.4,
p ∈ σS

ap(A) which is impossible by part (a). Therefore q ∈ ρS(A) for all q ∈ H

for which |q| < i(A), and hence BH(0, i(A)) ⊆ ρS(A).
(d) Clearly σS(A) ⊆ ∇H(0, rs(A)). Since A is non-invertible and i(A) = r(A),
from part (b), we have ∇H(0, rS(A)) ⊆ σS(A). Thus σS(A) = ∇H(0, rS(A)).
(e) Clearly σS(A) ⊆ ∇H(0, rs(A)). Since A is invertible and i(A) = r(A),
from part (c), we have BH(0, rS(A)) ⊆ ρS(A). Thus

σS(A) = ∇H(0, rS(A)) ∩ (H \ BH(0, rS(A))) = {q ∈ H | |q| = rS(A)}.

�

Remark 4.16. If A is an isometry, that is ‖A(φ)‖ = ‖φ‖ for all φ ∈ V R
H

, then
rS(A) = i(A) = 1, hence σS

ap(A) ⊆ ∂BH(0, 1), the quaternionic unit sphere.
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If A is an invertible isometry, then by Theorem 4.4 and parts (a), (e) of the
above proposition σS

ap(A) = σS(A) = ∂BH(0, 1) while if A is a non-invertible
isometry then, by part (d) of the above proposition σS(A) = ∇H(0, 1).

5. Hyper-Kernel and Hyper-Range of a Right Linear Operator
on V R

H

Let A ∈ B(V R
H

), then clearly we have

ker(A0) = {0} ⊆ ker(A) ⊆ ker(A2) ⊆ · · · and

ran(A0) = V R
H

⊇ ran(A) ⊇ ran(A2) ⊇ · · ·

Definition 5.1. Let A ∈ B(V R
H

). Then the hyper-range of A is denoted by
A∞(V R

H
) and

A∞(V R
H

) =
⋂
n∈N

ran(An)

and the hyper-kernel of A is denoted by

N∞(A) =
⋃
n∈N

ker(An).

Proposition 5.2. Let A ∈ B(V R
H

), then A∞(V R
H

) and N∞(A) are A-invariant
right linear subspaces of V R

H
.

Proof. Proof is elementary. �

Lemma 5.3. Let A ∈ B(V R
H

). For q ∈ H, if P1(q) and P2(q) are co-prime poly-
nomials with real coefficients then there exist polynomials Q1(q) and Q2(q)
with real coefficients such that P1(A)Q1(A) + P2(A)Q2(A) = IV R

H

.

Proof. Since the polynomials have real coefficients it follows from the classical
case. See Lemma 1.2 in [2]. �

The following results establish some basic properties of hypekernels and
hyper-ranges which will be needed in the sequel.

Theorem 5.4. Let A ∈ B(V R
H

). Then
(a) Rq(A)(N∞(V R

H
)) = N∞(V R

H
) for every 0 �= q ∈ H;

(b) N∞(Rq(A)) ⊆ (A2)∞(V R
H

) for every 0 �= q ∈ H.

Proof. (a) In order to prove (a) we need to show that Rq(ker(An)) = ker(An)
for all n ∈ N and q �= 0. Clearly Rq(A)(ker(An)) ⊆ ker(An) for all n ∈ N.
Since, for q �= 0, Rq(p) and pn are co-prime polynomials with real coefficients.
Therefore, by Lemma 5.3, there are polynomials Q1(p) and Q2(p) with real
coefficients such that

Rq(A)Q1(A) + AnQ2(A) = IV R
H

.

If φ ∈ ker(An), then Rq(A)Q1(A)φ = φ, and since, as An and Q1(A)
commute, Q1(A)φ ∈ ker(An). Therefore, φ ∈ Rq(A)(ker(An)), and hence
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ker(An) ⊆ Rq(A)(ker(An)). That is, Rq(A)(ker(An)) = ker(An) for all n ∈ N

and q �= 0.
(b) First we prove that ker(Rq(A)n) = A2(ker(Rq(A)n)) for all n ∈ N and
q �= 0. clearly A2(ker(Rq(A)n)) ⊆ ker(Rq(A)n) for all n ∈ N. Since, for
q �= 0 and for any n ∈ N, p2 and Rq(p)n are co-prime polynomials with real
coefficients, there exist polynomials P (p) and Q(p) with real coefficients such
that A2P (A)+Q(A)Rq(A)n = IV R

H

for all n ∈ N and q �= 0. Therefore, by the
same argument of part (a), we have ker(Rq(A)n) = A2(ker(Rq(A)n)) for all
n ∈ N and q �= 0. Hence N∞(Rq(A)) = A2(N∞(Rq(A))) for all q �= 0. From
this it easily follows that N∞(Rq(A)) = (A2)n(N∞(Rq(A))) for all q �= 0
and n ∈ N. Therefore, N∞(Rq(A)) ⊆ (A2)∞(N∞(Rq(A))) for all q �= 0. �

Proposition 5.5. If A ∈ B(V R
H

) then Am(ker(Am+n)) = ran(Am) ∩ ker(An)
for all m,n ∈ N.

Proof. A proof follows exactly as a complex proof. For a complex proof see
Lemma 1.4 in [2]. �

Theorem 5.6. Let A ∈ B(V R
H

). The following statements are equivalent.
(a) ker(A) ⊆ Am(V R

H
) for all m ∈ N.

(b) ker(An) ⊆ A(V R
H

) for each n ∈ N.
(c) ker(An) ⊆ Am(V R

H
) for each n ∈ N and each m ∈ N.

(d) ker(An) = Am(ker(Am+n)) for each n ∈ N and each m ∈ N.

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.5 in [2]. �

Corollary 5.7. Let A ∈ B(V R
H

). Then the statements of Theorem 5.6 are
equivalent to each of the following inclusions.

(i) ker(A) ⊆ A∞(V R
H

).
(ii) N∞(A) ⊆ A(V R

H
).

(iii) N∞(A) ⊆ A∞(V R
H

).

Proof. Straightforward from the statements of Theorem 5.6. �

5.1. Algebraic Core of a Right Linear Operator

Definition 5.8. Let A ∈ B(V R
H

). The algebraic core, C(A), is defined to be
the greatest subspace M of V R

H
for which A(M) = M .

Remark 5.9. (a) Clearly if A ∈ B(V R
H

) is surjective, then C(A) = V R
H

.
(b) Let A ∈ B(V R

H
), then clearly C(A) = An(C(A)) ⊆ An(V R

H
) for all

n ∈ N. Thus C(A) ⊆ ⋂
n∈N

An(V R
H

) = A∞(V R
H

).

Theorem 5.10. Let A ∈ B(V R
H

) and

M = {φ ∈ V R
H

| ∃ {ψn}∞
n=0 ⊆ V R

H
such that φ = ψ0 and Aψn+1 = ψn, ∀ n ∈ Z+}.

Then C(A) = M .

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.8 in [2]. �
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Proposition 5.11. Let A ∈ B(V R
H

). Suppose there exists m ∈ N such that
ker(A)∩Am(V R

H
) = ker(A)∩Am+k(V R

H
) for all k ≥ 0, then C(A) = A∞(V R

H
).

Proof. A proof follows exactly as a complex proof. For a complex proof see
Lemma 1.9 in [2]. �

Theorem 5.12. Let A ∈ B(V R
H

). Suppose that one of the following conditions
holds:
(a) dim(ker(A)) < ∞.
(b) codim(A(V R

H
)) < ∞.

(c) ker(A) ⊆ An(V R
H

) for all n ∈ N.
Then C(A) = A∞(V R

H
).

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.10 in [2]. �

5.2. Semi-Regular Operators on V R
H

In the complex theory, the semi-regular operators play an important role in
the definition of Kato spectrum and for this reason the Kato spectrum is
sometimes referred to as semi-regular spectrum. The same argument applies
to the S-spectrum.

Definition 5.13. Let A ∈ B(V R
H

). A is said to be semi-regular if ran(A) is
closed and A verifies one of the equivalent conditions of Theorem 5.6.

Example 5.14. (a) If A ∈ B(V R
H

) is surjective, then clearly A is semi-regular.
(b) If A ∈ B(V R

H
) is injective with closed range, then A is semi-regular.

A semi-regular operator has closed range. So it is useful to find condi-
tions which ensures that A(V R

H
) is closed. In this regard, the the following

quantity associated with A is useful.

Definition 5.15. If A ∈ B(V R
H

, UR
H

), the reduced minimum modulus of a
nonzero operator A is defined to be

γ(A) = inf
φ/∈ker(A)

‖Aφ‖
dist(φ, ker(A))

.

If A = 0, then we take γ(A) = ∞.

Proposition 5.16. Let A ∈ B(V R
H

).
(a) If A is invertible, then γ(A) = ‖A−1‖−1.
(b) γ(A) = γ(A†).

Proof. A proof follows exactly as a complex proof. For details see [21], page
203. �

Theorem 5.17. Let A ∈ B(V R
H

). Then γ(A) > 0 if and only if ran(A) is
closed.

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.13 in [2]. �
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Proposition 5.18. If A ∈ B(V R
H

) is bounded below then A is semi-regular.

Proof. Proof is elementary. �

Theorem 5.19. Let A ∈ B(V R
H

) be semi-regular, then

(a) γ(An) ≥ γ(A)n for all n ∈ N.
(b) An is semi-regular for all n ∈ N.

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.16 and Corollary 1.17 in [2]. �

5.3. Analytical Core of A ∈ B(V R
H
)

In some sense, the analytical core is the analytic counterpart of C(A) [2].

Definition 5.20. (See [2] for the complex case) Let A ∈ B(V R
H

). The analytical
core of A is the set K(A) of all φ ∈ V R

H
such that there exists a sequence

{un}∞
n=0 ⊆ V R

H
and a constant δ > 0 such that

(i) φ = u0 and Aun+1 = un for all n ∈ Z+.
(ii) ‖un‖ ≤ δn‖φ‖ for all n ∈ Z+.

Theorem 5.21. Let A ∈ B(V R
H

). then

(a) K(A) is a right linear subspace of V R
H

;
(b) A(K(A)) = K(A);
(c) K(A) ⊆ C(A).

Proof. φq ∈ K(A) for each φ ∈ K(A) and q ∈ H is straightforward. The rest
follows a complex proof. For a complex proof see Theorem 1.21 in [2]. �

Theorem 5.22. Let A ∈ B(V R
H

).

(a) If F is a closed subspace of V R
H

such that A(F ) = F , then F ⊆ K(A).
(b) If C(A) is closed, then C(A) = K(A).

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.22 in [2]. �

Theorem 5.23. Let A ∈ B(V R
H

) be a semi-regular operator. If φ ∈ V R
H

, then
Aφ ∈ C(A) if and only if φ ∈ C(A).

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.23 in [2]. �

Theorem 5.24. Let A ∈ B(V R
H

) be a semi-regular operator. Then C(A) is
closed and C(A) = K(A) = A∞(V R

H
).

Proof. A proof follows exactly as a complex proof. For a complex proof see
Theorem 1.24 in [2]. �
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6. Local S-Spectrum on V R
H

In [12] (see page 305), the single valued extension property, local S-resolvent
set and local S-spectrum are defined in terms of slice hyperholomorphic exten-
sion of the operator Rq(A,φ) = Rq(A)−1(φq−Aφ) on axially symmetric open
sets containing ρS(A) of H . However, we stay with certain straightforward
extensions of the complex definitions to quaternions.

Note that the quaternionic pseudo-resolvent operator, Rq = A2 −
2Re(q) + |q|2IV R

H

, is structurally different from its complex counterpart
Qλ = A−λI. Also the quaternionic S-spectrum is structurally different from
the complex spectrum. Thus one cannot expect to recover the complex spec-
trum or SVEP from the corresponding quaternionic version. However, one
may study spectral theory on quaternion slices (complex planes contained
inside quaternions) with the operator Qλ but it will be exactly the complex
spectral theory.

Definition 6.1. (See [21] for the corresponding complex definition) An opera-
tor A ∈ B(V R

H
) has the single-valued extension properly, abbreviated SVEP,

at q0 ∈ H if for every open neighborhood U ⊆ H of q0, the only continuous
right slice-regular solution f : U −→ V R

H
of the equation Rq(A)f(q) = 0 for

all q ∈ U is the zero function on U . The operator A is said to have the SVEP
if A has the SVEP at every point q ∈ H.

Definition 6.2. (See [21] for the corresponding complex definition) Let A ∈
B(V R

H
) the local S-resolvent set ρS

A(φ) of A at a point φ ∈ V R
H

is defined as
the union of all open subsets U of H for which there is a continuous right
slice-regular function f : U −→ V R

H
which satisfies

Rq(A)f(q) = φ, for all q ∈ U.

The local S-spectrum σS
A(φ) of A at φ is then defined as

σS
A(φ) = H \ ρS

A(φ).

Remark 6.3. Let A ∈ B(V R
H

) and φ ∈ V R
H

. Then
(a) Since ρS

A(φ) is the union of open sets, it is an open set in H, and hence
σS

A(φ) is a closed set in H.
(b) Let φ �= 0 and q ∈ ρS(A), then ker(Rq(A)) = {0}. We have the right

inverse R−1
q (A) : ran(A2) −→ V R

H
and it is right-slice regular in q [12].

Let U ⊆ H be open and define f : U −→ V R
H

by f(q) = R−1
q (A)φ for all

q ∈ U , then Rq(A)f(q) = φ for all q ∈ U . Hence q ∈ ρS
A(φ). That is

ρS(A) ⊆ ρS
A(φ), and hence σS

A(φ) ⊆ σS(A). (6.1)

Definition 6.4. (See [21] for the corresponding complex definition) Let A ∈
B(V R

H
) and F ⊆ H. The local S-spectral subspace of A associated with F is

defined by

XA(F ) = {φ ∈ V R
H

| σS
A(φ) ⊆ F}.

Definition 6.5. (See [2,21] for the corresponding complex definition) Let A ∈
B(V R

H
) and F ⊆ H be a closed subset. The set XA(F ) consists of all φ ∈ V R

H
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for which there exists a right slice-regular function f : H \ F −→ V R
H

that
satisfies Rq(A)f(q) = φ for all q ∈ H \ F . The set XA(F ) is called the global
S-spectral subset of A associated with the set F .

The following elementary examples shows that the surjectivity of any
operator A ∈ B(V R

H
) and the surjectivity of its pseudo-resolvent Rq(A) do

not need to be dependent on each other.

Example 6.6. Let q = q0 ∈ R, and define A : V R
H

−→ V R
H

by Aφ = φq0,
for all φ ∈ V R

H
. Then clearly A ∈ B(V R

H
) is surjective while Rq(A) = 0, and

hence Rq(A) is not surjective.

From the above example, one can note that the surjectivity of an oper-
ator A ∈ B(V R

H
) does not guaranty that Rq(A) is surjective, for each q ∈ H.

Example 6.7. Let q = q1i + q2j + q3k ∈ H and A ∈ B(V R
H

) such that A2 = 0
(nilpotent operator of index 2). Then it is clear that A is not surjective and
Rq(A) = |q|2IV R

H

is a surjective operator.

The above example shows that, for each q ∈ H, the surjectivity of Rq(A)
does not guarantee the surjectivity of A.

The following proposition shows that, among other results, the surjec-
tivity S-spectrum is closely related to the local S-spectrum. The hypothesis
in the corresponding complex version of the following Proposition 6.8 is just
one condition: A is a bounded operator (see [21], page 35) and an obvious
traslation was used in the complex proof. However, in the quaternionic set-
ting the boundedness of A alone is not enough to have the same result due to
the weak analyticity, quadratic structure of the pseudo-resolvent operator and
the non-linearity of operator A−qIV R

H

. Unfortunately the obvious translation
argument cannot be applied in quaternionic setting since the composition f ◦t
of a slice-regular function f with a translation t is not slice-regular in gen-
eral, unless the translation is along the real axis. In this regard, an additional
condition on A is added in the following proposition which is the surjectivity
of A.

Proposition 6.8. Let A ∈ B(V R
H

) be surjective. Then,
(a) for every p ∈ H \ σS

su(A), there is an r > 0 for which V R
H

= XA(H \
BH(p, r));

(b) σS
su(A) =

⋃{σS
A(φ) | φ ∈ V R

H
};

(c) if A has SVEP and q ∈ σpS(A), then σS
A(φ) = Sq for each eigenvector

φ of A with respect to q;
(d) σS(A) = σS

su(A) if A has SVEP, and σS(A) = σS
ap(A) if A† has SVEP.

Proof. (a) Since A is surjective, by the open mapping theorem, there exists
c > 0 such that for every u ∈ V R

H
, there is some v ∈ V R

H
such that Av = u

and c‖v‖ ≤ ‖u‖. Let φ ∈ V R
H

be arbitrary. Starting with φ0 = φ we obtain,
by induction, a sequence {φn} ⊆ V R

H
such that Aφn = φn−1 and c‖φn‖ ≤

‖φn−1‖, for all n ∈ N. Therefore, since ‖φn‖ ≤ c−n‖φ‖, we conclude that, for
any fixed q ∈ BH(0, c), the series

ψq =
∞∑

n=0

φn+1q
n
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converges locally uniformly. If we do the same for the vector ψq ∈ V R
H

, we
can obtain another sequence {ψn} ⊆ V R

H
such that ψ0 = ψq, Aψn = ψn−1

with d‖ψn‖ ≤ ‖ψn−1‖ for all n ∈ N. Define

f(q) =
∞∑

n=0

ψn+1q
n,

which converges locally uniformly on the open ball BH(0, r), where r =
min{c, d}, and hence f is right-slice regular in q. We have

(A − qIV R
H

)f(q) =
∞∑

n=0

ψnq
n −

∞∑
n=0

ψn+1q
n+1 = ψ0 = ψq.

Therefore

Rq(A)f(q) = (A − qIV R
H

)(A − qIV R
H

)f(q)

= (A − qIV R
H

)ψ = (A − qIV R
H

)
∞∑

n=0

φn+1q
n

=
∞∑

n=0

φnq
n −

∞∑
n=0

φn+1q
n+1 = φ0 = φ.

That is, Rq(A)f(q) = φ for all q ∈ BH(0, r), hence φ ∈ X (H \ BH(0, r)), and
therefore V R

H
= X (H \ BH(0, r)).

(b) For arbitrary q ∈ H, to prove the equality in (b) it is enough to show that
Rq(A) is surjective if and only if q ∈ ρS

A(φ) for every φ ∈ V R
H

. Suppose q ∈
ρS

A(φ) and φ ∈ V R
H

. Then there is a right regular function on a neighborhood
of U of q, f : U −→ V R

H
such that Rp(A)f(p) = φ for all p ∈ U . Thus Rq(A) is

surjective. Conversely suppose that Rq(A) is surjective Then q ∈ H \σS
su(A).

Therefore, from part (a) Rq(A)(V R
H

) = V R
H

= XA(H \ BH(q, r)). Therefore,
there is a right-slice regular function f : BH(q, r) −→ V R

H
such that, for every

φ ∈ V R
H

, Rq(A)f(q) = φ for all q ∈ BH(q, r). Hence q ∈ ρS
A(φ).

(c) Suppose that q ∈ σpS(A). Then there is a nonzero φ ∈ V R
H

such that
Rq(A)φ = 0. This implies Rr(A)φ = 0, for all r ∈ Sq with Sq a 2-sphere
in H (see [12], page 77). Since the right eigenvalues coincide with the point
spectrum, we also have Aφ = φq. Define f : H \ Sq −→ V R

H
by

f(p) = φ(q2 − 2Re(p)q + |p|2)−1, for all p ∈ H \ Sq.

Then the function f is right-slice regular on H�Sq, and satisfies, as Aφ = φq,

Rp(A)f(p) = (A2 − 2Re(p)A − |p|2)φ(q2 − 2Re(p)q + |p|2)−1

= φ(q2 − 2Re(p)q + |p|2)(q2 − 2Re(p)q + |p|2)−1 = φ for all p ∈ H \ Sq.

Therefore H\Sq ⊆ ρS
A(φ), and hence σS

A(φ) ⊆ Sq. For the other inclusion, Let
r ∈ ρS

A(φ). Then there exists a right-slice regular function f : U −→ V R
H

on
some open neighborhood of r such that Rp(A)f(p) = φ for all p ∈ U . Assume
that r ∈ Sq, and it follows that

Rp(A)Rr(A)f(p) = Rr(A)Rp(A)f(p) = Rr(A)φ = 0, for all p ∈ U.
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Therefore by SVEP, Rr(A)f(p) = 0, for all p ∈ U . In particular, 0 �= φ =
Rr(A)f(r) = 0, which is a contradiction. Therefore r ∈ H � Sq. Hence Sq ⊆
σS

A(φ).
(d) Suppose A has SVEP, then by parts (b) and (c), we have

σpS(A) ⊆
⋃

{σS
A(φ) | φ ∈ V R

H
} = σS

su(A).

Therefore by Eq. (4.1), we get

σS(A) = σS
su(A). (6.2)

If A† has SVEP, then by Eq. (6.2) and Proposition 4.10, we have

σS(A) = σS(A†) = σS
su(A†) = σS

ap(A).

�

The following proposition relates isolated points of various spectra to
SVEP.

Proposition 6.9. Let A ∈ B(V R
H

).
(a) If σpS(A) does not cluster at q0 ∈ H, then A has SVEP at q0.
(b) If σS

ap(A) does not cluster at q0 ∈ H, then A has SVEP at q0.
(c) If σS

su(A) does not cluster at q0 ∈ H, then A† has SVEP at q0.

Proof. (a) Suppose that σpS(A) does not cluster at q0. Then there exists a
neighborhood U of q0 such that Rq(A) is injective for all q ∈ U and q �=
q0. Let f : V −→ V R

H
be a right-slice regular function defined on another

neighborhood of q0 for which the equation Rq(A)f(q) = 0 holds for every
q ∈ V . Obviously we may assume that V ⊆ U . Then f(q) ∈ ker(Rq(A)) = {0}
for all q ∈ V and q �= q0. Hence f(q) = 0 for all q ∈ V and q �= q0. From
the continuity of f at q0 we conclude that f(q0) = 0. Hence f = 0 on V , and
therefore A has SVEP at q0.
(b) Suppose that σS

ap(A) does not cluster at q0. Then there is a neighborhood
U of q0 such that U \ {q0}∩σS

ap(A) = ∅. Since, by Proposition 4.2, σpS(A) ⊆
σS

ap(A), we have U \{q0}∩σpS(A) = ∅. Therefore, from the proof of part (a),
A has SVEP.
(c) Since, by Proposition 4.10, σS

su(A) = σS
ap(A

†). Therefore, from part (b)
A† has SVEP. �

Remark 6.10. (a) From Proposition 6.9 every operator A ∈ B(V R
H

) has
SVEP at an isolated point of the S-spectrum.

(b) Obviously A ∈ B(V R
H

) has SVEP at every q ∈ ρS(A).

7. Kato S-Spectrum in V R
H

In the complex setting, among the many concepts dealt with in Kato’s exten-
sive treatment of perturbation theory [19] there is a very important part of
the spectrum called the Kato spectrum. Here we abstract the complex defi-
nition given in [2,21] to quaternions.
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Definition 7.1. For A ∈ B(V R
H

), the Kato S-resolvent set is defined as

ρS
ka(A) = {q ∈ H | ran(Rq(A)) is closed and ker(Rq(A)) ⊆ Rq(A)∞(V R

H
)}

and the Kato S-spectrum is defined as σS
ka(A) = H \ ρS

ka(A).

Remark 7.2. Let A ∈ B(V R
H

).
(a) From Theorem 5.6 we can see that:

q ∈ ρS
ka(A) if and only if ran(Rq(A)) is closed and Rq(A) satisfies one

of the equivalent conditions of Theorem 5.6. That is

ρS
ka(A) = {q ∈ H | Rq(A) is semi-regular}.

(b) In the complex literature the Kato spectrum is sometimes referred to as
semi-regular spectrum. For example in [21] it is called Kato spectrum
while in [2] it is referred as semi-regular spectrum.

(c) Let q ∈ ρS(A), then Rq(A) has an inverse in B(V R
H

). Therefore, by
the bounded inverse theorem, Rq(A) is bounded below, and hence by
Proposition 5.18, Rq(A) is semi-regular. Thus q ∈ ρS

ka(A). That is,
ρS(A) ⊆ ρS

ka(A), and hence σS
ka(A) ⊆ σS(A).

Proposition 7.3. Let A ∈ B(V R
H

), then H \ σS
ap(A) ⊆ ρS

ka(A).

Proof. Let q ∈ H \ σS
ap(A), then by Proposition 4.3, ker(Rq(A)) = {0} and

ran(Rq(A)) is closed. Therefore, q ∈ ρS
ka(A). �

Remark 7.4. Let q = q0 + q1i + q2j + q3k ∈ H and A ∈ B(V R
H

). Denote
β(A, q) = γ(A)2 − 2|q0|γ(A) − |q|2 and β(q) = |q0| +

√
2q2

0 + |q|2, then we
have

β(A, q) > 0 ⇔ γ(A)2 − 2|q0|γ(A) − |q|2 > 0
⇔ (γ(A) − |q0|)2 > |q0|2 + |q|2
⇔ γ(A) > |q0| +

√
|q0|2 + |q|2 = β(q).

Also note that γ(A) > β(q) implies γ(A) > |q0| also β(q) > 0 if q �= 0.

Proposition 7.5. Let A ∈ B(V R
H

) and β(q) is as in Remark 7.4, then
(a) A is surjective (respectively, bounded below) if and only if A† is bounded

below (respectively, surjective).
(b) if A is bounded below (respectively, surjective) then Rq(A) is bounded

below (respectively, surjective) for each q ∈ H that satisfies γ(A) > β(q).

Proof. (a) Proof is exactly as a complex proof. For a complex proof see
Lemma 1.30 (a) in [2].
(b) Suppose A is bounded below. Thus, A is injective and ran(A) is closed.
Hence, as A is continuous, A2 is injective and A2(V R

H
) = A(A(V R

H
)) is closed.

Therefore, from Theorem 5.17 and Theorem 5.19, γ(A) > 0 and γ(A2) > 0.
Also from the injectivity of A and A2,

γ(A)dist(φ, ker(A)) = γ(A)‖φ‖ ≤ ‖Aφ‖, for all φ ∈ V R
H

and

γ(A2)dist(φ, ker(A2)) = γ(A2)‖φ‖ ≤ ‖A2φ‖, for all φ ∈ D(A2).
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We have, for φ ∈ D(A2),

‖Rq(A)φ‖ ≥ ‖A2φ‖ − 2|Re(q)|‖Aφ‖ − |q|2‖φ‖
≥ γ(A2)‖φ‖ − 2|Re(q)|γ(A)‖φ‖ − |q|2‖φ‖
= (γ(A2) − 2|Re(q)|γ(A) − |q|2)‖φ‖ ≥ β(A, q)‖φ‖ by Theorem 5.19.

Hence, if γ(A) > β(q), then, by Remark 7.4, β(A, q) > 0. Therefore, Rq(A)
is bounded below. Trivially, if A is surjective, then Rq(A) is surjective. �

Theorem 7.6. Let A ∈ B(V R
H

) be semi-regular. Then Rq(A) is semi-regular
for all q ∈ H for which γ(A) > β(q), where β(q) is as in Remark 7.4. Moreover
ρS

ka(A) is open and σS
ka(A) is compact.

Proof. First we show that C(A) ⊆ C(Rq(A)) for all q ∈ H with γ(A) > β(q).
Let A0 : C(A) −→ C(A) denote the restriction of A to C(A). Since A is
semi-regular, by Theorem 5.24, C(A) is closed. Since A(C(A)) = C(A), A0

is surjective. Therefore, by Proposition 7.5, Rq(A0) is surjective for all q ∈ H

with γ(A0) > β(q). Thus Rq(A0)(C(A)) = Rq(A)(C(A)) = C(A) for all
q ∈ H with γ(A0) > β(q). On the other hand, A is semi-regular, therefore by
Theorem 5.6, Corollary 5.7 and Theorem 5.12, we have ker(A) ⊆ A∞(V R

H
) =

C(A). This implies, also by Theorem 5.17, γ(A0) ≥ γ(A) > 0,

C(A) ⊆ C(Rq(A)) for all q ∈ H with γ(A) > β(q). (7.1)

Moreover, for every q ∈ H \ {0} we have A(ker(Rq(A))) = ker(Rq(A))
and ker(Rq(A)) is closed, therefore, from Theorems 5.22 and 5.24, we have
ker(Rq(A)) ⊆ C(A) for all q ∈ H \ {0}. We also have C(Rq(A)) =
Rq(A)n(C(Rq(A))) ⊆ Rq(A)n(V R

H
) for all q ∈ H and for all n ∈ N. Therefore,

from Eq. (7.1), we have, for each q ∈ H \ {0} and for each n ∈ N,

ker(Rq(A)) ⊆ C(Rq(A)) ⊆ Rq(A)n(V R
H

), with γ(A) > β(q). (7.2)

Since A is semi-regular, by Theorem 5.19, A2 is semi-regular. Therefore Eq.
(7.2) is valid for q = 0 as well. That is, Eq. (7.2) is valid for all q ∈ H with
γ(A) > β(q).
Claim: ran(Rq(A)) is closed for all q ∈ H with γ(A) > β(q).
If C(A) = {0}, then as A is semi-regular, by Theorems 5.22 and 5.24,
ker(A) ⊆ C(A) = {0}. Therefore, by the bounded inverse theorem, A is
bounded below, and hence by Lemma 7.5 Rq(A) is bounded below for all
q ∈ H with γ(A) > β(q). Thus, by definition, ran(Rq(A)) is closed.
If C(A) = V R

H
, then A is surjective, therefore, again by Proposition 7.5, so is

Rq(A).
Now consider the case C(A) �= {0} and C(A) �= V R

H
. Let V = V R

H
/C(A)

and let A : V −→ V be the quotient map defined by A φ := Aφ, where
φ ∈ V . Clearly A is continuous. If A φ = Aφ = 0, then Aφ ∈ C(A), thus, by
Theorem 5.23, φ ∈ C(A) which implies φ = 0. Therefore A is injective. Next
we prove that A is bounded below. To prove it, we only need to show that
A has closed range. To see this we show the inequality γ(A) ≥ γ(A), then,
by Theorem 5.17, A has closed range. For each φ ∈ V R

H
and each u ∈ C(A)
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we have, recalling the fact that ker(A) ⊆ C(A) and by the definition of the
quotient norm,

‖φ‖ = dist(φ,C(A)) = dist(φ − u,C(A))

≤ dist(φ − u, ker(A)) ≤ 1
γ(A)

‖Aφ − Au‖.

From the equality C(A) = A(C(A)) we obtain that ‖Aφ‖ = inf
u∈C(A)

‖Aφ −

Au‖. Thus, ‖φ‖ ≤ 1
γ(A)‖Aφ‖. That is, γ(A) ≤ ‖Aφ‖

‖φ‖ for all φ ∈ V , from this,

as A is injective, we get γ(A) ≥ γ(A). Hence A is bounded below. Therefore,
by Proposition 7.5, Rq(A) is bounded below for all q ∈ H with γ(A) > β(q)
and hence for all q ∈ H with γ(A) > β(q). Finally, to show that ran(Rq(A)) is
closed for all q ∈ H with γ(A) > β(q), let {φn} ⊆ ran(Rq(A)) be a sequence
such that φn −→ φ ∈ V R

H
as n −→ ∞. Then clearly φn −→ φ ∈ V as

n −→ ∞ and φn ∈ ran(Rq(A)), and this space is closed for all q ∈ H with
γ(A) > β(q), therefore φ ∈ ran(Rq(A)). Let φ = Rq(A)v and v ∈ v ∈ V .
Then φ − Rq(A)v ∈ C(A) ⊆ Rq(A)(C(A)) for all q ∈ H with γ(A) > β(q).
So there exists u ∈ C(A) such that φ = Rq(A)(v + u), hence φ ∈ ran(Rq(A))
for all q ∈ H with γ(A) > β(q). Therefore, ran(Rq(A)) is closed for all q ∈ H

with γ(A) > β(q), and, consequently, Rq(A) is semi-regular for all q ∈ H

with γ(A) > β(q). That is, q ∈ ρS
ka(A) for all q ∈ H such that γ(A) > β(q).

Hence q ∈ σS
ka(A) if q ∈ H satisfies β(q) ≤ γ(A). Let q ∈ σS

ka(A), then
there exist a sequence {qn} ⊆ σS

ka(A) such that qn −→ q as n −→ ∞.
So we have β(qn) ≤ γ(A), hence, as n −→ ∞ we get β(q) ≤ γ(A), and
therefore q ∈ σS

ka(A). Thus σS
ka(A) is closed, consequently, ρS

ka(A) is open.
From Remark 7.2, (c) we have σS

ka(A) ⊆ σS(A). We know σS(A) is compact
and since a closed subset of a compact set is compact, σS

ka(A) is compact.
�

Proposition 7.7. Suppose that the operator A ∈ B(V R
H

) satisfies ker(A) ⊆
A∞(V R

H
). Then A maps A∞(V R

H
) onto itself, and ker(Am) ⊆ A∞(V R

H
) for

all m ∈ N.

Proof. A proof follows its complex counterpart. For a complex proof see [21],
Lemma 3.1.4. �

Proposition 7.8. Suppose that the operator A ∈ B(V R
H

) has closed range, and
that Y is a closed right linear subspace of V R

H
that contains ker(A), then A(Y )

is closed.

Proof. A proof follows its complex counterpart. For a complex proof see [21],
Lemma 3.1.3. �

Proposition 7.9. Let A ∈ B(V R
H

) be surjective and q ∈ ρS
ka(A). Then Rq(A)m

has closed range for every m ∈ N, the space Rq(A)∞(V R
H

) is closed, Rq(A)
maps Rq(A)∞(V R

H
) onto itself, and Rq(A)∞(V R

H
) ⊆ XA(H \ {q}).

Proof. Claim: Rq(A)m has closed range for each m ∈ N.
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We prove it by induction. Since q ∈ ρS
ka(A), ran(Rq(A)) is closed so

the case m = 1 is clear. Assume that ran(Rq(A)m) is closed for some
m ≥ 1. Let Y = ran(Rq(A)). From Proposition 7.7, we know that, as
q ∈ ρS

ka(A), ker(Rq(A)m) ⊆ Rq(A)∞(V R
H

) ⊆ Y . Therefore, by Proposi-
tion 7.8, Rq(A)m(Y ) is closed. That is, Rq(A)m(Y ) = Rq(A)m+1(V R

H
) is

closed, which completes the induction.
As Rq(A)m(V R

H
) is closed for all m ∈ N, their intersection Rq(A)∞(V R

H
)

is closed. Since q ∈ ρS
ka(A), ker(Rq(A)) ⊆ Rq(A)∞(V R

H
), therefore, by

Proposition 7.7, Rq(A) maps Rq(A)∞(V R
H

) onto itself. To prove the inclu-
sion, we can say from Proposition 7.7 that the restriction of Rq(A) to
Rq(A)∞(V R

H
) is surjective. Thus q �∈ σS

su(B), where B := A|Rq(A)∞(V R
H

).
Let φ ∈ Rq(A)∞(V R

H
), then part (b) of Proposition 6.8 to conclude that

σS
A(φ) ⊆ σS

B(φ) ⊆ σS
su(B) ⊆ H \ {q}.

This observation shows that φ ∈ XA(H \ {q}). Thus Rq(A)∞(V R
H

) ⊆ XA(H \
{q}). �

Following the complex definition of analytic residuum in [21] we define
the following.

Definition 7.10. Let A ∈ B(V R
H

), the analytic residuum S(A) is the open set
of points q ∈ H for which there exists a non-vanishing continuous right-slice
regular function f : U −→ V R

H
on some open neighborhood U of q such that

Rp(A)f(p) = 0 for all p ∈ U .

Proposition 7.11. Let A ∈ B(V R
H

), then S(A) ⊆ intσpS(A), the interior of
σpS(A). Moreover S(A) is empty if A has SVEP.

Proof. Let q ∈ S(A), then there exists an open neighborhood U of q
and a non-vanishing right-slice regular function f : U −→ V R

H
such that

Rp(A)f(p) = 0 for all p ∈ U . Since f(p) �= 0 for all p ∈ U , ker(Rp(A)) �= {0}
for all p ∈ U . Hence q ∈ U ⊆ σpS(A). Therefore, S(A) ⊆ intσpS(A). S(A) = ∅
if A has SVEP is trivial from the definitions. �

Proposition 7.9 leads to the following sandwich formula for the Kato
S-spectrum. In particular, we obtain ∂σS(A) ⊆ σS

ka(A), which ensures that
σS

ka(A) is non-empty provided that V R
H

is non-trivial.

Proposition 7.12. Let A ∈ B(V R
H

) be surjective, then
(a) ρS

ka(A) = ρS
ka(A†);

(b) ρS
ka(A) ∩ σS(A) ⊆ S(A) ∪ S(A†);

(c) ∂σS(A) ⊆ (σS
ap(A) ∩ σS

su(A)) \ (S(A) ∩ S(A†) ⊆ σS
ka(A) ⊆ σS

ap(A) ∩
σS

su(A);
(d) (σS

ap(A)∩σS
su(A))\ (S(A)∩S(A†) = (σS

ap(A)\S(A))∪ (σS
su(A)\S(A†)).

Proof. (a) Let q ∈ ρS
ka(A). Then ran(Rq(A)) is closed and by Corollary 5.7,

ker(Rq(A)) ⊆ Rq(A)∞(V R
H

). Then by Proposition 7.9, Rq(A)n has closed
range for every n ∈ N, and by Proposition 7.7, ker(Rq(A)m) ⊆ Rq(A)(V R

H
).

Hence by the Proposition 3.9, Rq(A†)n(V R
H

) is closed and, by Proposition 3.3

ker(Rq(A†)) = [Rq(A)(V R
H

)]⊥ ⊆ [ker(Rq(A)n)]⊥ = Rq(A†)n(V R
H

)
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for all n ∈ N. Thus q ∈ ρS
ka(A†), and therefore ρS

ka(A) ⊆ ρS
ka(A†). The

opposite inclusion is similar.
(b) From Proposition 7.3 we have H \ σS

ap(A) ⊆ ρS
ka(A). For q ∈ H \ σS

su(A),
we have Rq(A)(V R

H
) = V R

H
, and hence trivially q ∈ ρS

ka(A). Therefore,

σS
ka(A) ⊆ σS

ap(A) ∩ σS
su(A). (7.3)

From Theorem 4.4 and Proposition 4.11, we have ∂σS(A) ⊆ σS
ap(A)∩σS

su(A).
From Proposition 7.11, we have,

S(A) ∩ S(A†) ⊆ intσpS(A) ∩ intσpS(A†) ⊆ intσS(A)

as σS(A) = σS(A†) by Proposition 4.10. Therefore,

∂σS(A) ⊆ (σS
ap(A) ∩ σS

su(A)) \ (S(A) ∩ S(A†). (7.4)

Claim:
ρS

ka(A) ∩ σS
ap(A) ⊆ S(A). (7.5)

Let q ∈ ρS
ka(A) ∩ σS

ap(A). Since q ∈ ρS
ka(A), ran(Rq(A)) is closed, and since

q ∈ σS
ap(A), by Proposition 4.3, ker(Rq(A)) �= {0}. Therefore q is a right

eigenvalue of A. Let φ be a corresponding eigenvector, then φ ∈ ker(Rq(A)).
Hence, by Proposition 7.9, as q ∈ ρS

ka(A),

φ ∈ ker(Rq(A)) ⊆ Rq(A)∞(V R
H

) ⊆ XA(H \ {q}).

Thus, by the definition of XA(H \ {q}), q ∈ ρS
A(φ), there exists a right-slice

regular function f : U −→ V R
H

on an open neighborhood of q for which
Rp(A)f(p) = φ for all p ∈ U . Define the right-slice regular function g : U −→
V R
H

by g(p) = Rq(A)f(p) for all p ∈ U . Since Rq(A) and Rp(A) commute,
we have

Rp(A)g(p) = Rp(A)Rq(A)f(p) = Rq(A)Rp(A)f(p)
= Rq(A)φ = 0 for all p ∈ U.

Since g(q) = Rq(A)f(q) = φ �= 0, by the continuity of g, there exists a
neighborhood V of q in H on which g does not vanish. Therefore q ∈ S(A).
The claim is proved.
Claim: ρS

ka(A) ∩ σS(A) ⊆ S(A) ∪ S(A†).
From Proposition 4.10 we have σS

su(A) = σS
ap(A

†). From part (a) and
Eq. (7.5) we get

ρS
ka(A) ∩ σS

su(A) = ρS
ka(A†) ∩ σS

ap(A
†) ⊆ S(A†). (7.6)

Also from Eq. (4.1), we have σS(A) = σpS(A) ∪ σS
su(A). Therefore,

ρS
ka(A) ∩ σS(A) = ρS

ka(A) ∩ (σpS(A) ∪ σS
su(A))

= (ρS
ka(A) ∩ σpS(A)) ∪ (ρS

ka(A) ∩ σS
su(A)

⊆ (ρS
ka(A) ∩ σS

ap(A)) ∪ (ρS
ka(A) ∩ σS

su(A)) by Proposition 4.2

= S(A) ∪ S(A†) by Equations (7.5) and (7.6)

(c) From Eqs. (7.5) and (7.6), we also have

ρS
ka(A) ∩ σS

ap(A) ∩ σS
su(A) ⊆ S(A) ∩ S(A†),
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which means

(σS
ap(A) ∩ σS

su(A)) \ (S(A) ∩ S(A†) ⊆ σS
ka(A).

Thus, from Eqs. (7.3) and (7.4), we get (c).
(d) From Eq. (4.1) and Proposition 4.2, we have

σS(A) = σpS(A) ∪ σS
su(A) ⊆ σS

ap(A) ∪ σS
su(A). (7.7)

Hence, from Proposition 7.3 and Eq. (7.7), we get

σS(A) \ σS
ap(A) ⊆ σS

su(A) and σS(A) \ σS
ap(A) ⊆ ρS

ka(A). (7.8)

From Eqs. (7.8) and (7.6) we also get

σS(A) \ σS
ap(A) ⊆ ρS

ka(A) ∩ σS
su(A) ⊆ S(A†). (7.9)

Also from Eq. (7.7) we obtain σS(A) \ σS
su(A) ⊆ σS

ap(A). Further, Proposi-
tion 4.8 and Eq. (4.1) yield σS(A) ⊆ σS

ap(A) ∪ σS
su(A). Hence, from Propo-

sition 4.10 part (b), Proposition 7.3 and part (a) of this proposition, we get
σS(A) \ σS

su(A) ⊆ ρS
ka(A). Therefore, we have

σS(A) \ σS
su(A) ⊆ ρS

ka(A) ∩ σS
ap(A) ⊆ S(A). (7.10)

From Eqs. (7.9) and (7.10) we get the inclusion

(σS
ap(A) \ S(A)) ∪ (σS

su(A) \ S(A†)) ⊆ (σS
su(A) ∩ σS

ap(A)) \ (S(A) ∩ S(A†).

The opposite inclusion is trivial, and hence we have (d). �

The sandwich formula of Proposition 7.12 yields a precise description of
the Kato S-spectrum when one of the sets S(A) or S(A†) is empty, which is
another way of saying that A or A† has SVEP. We present it in the following
corollary.

Corollary 7.13. Let A ∈ B(V R
H

) be surjective.

(a) If A has SVEP, then σS
ka(A) = σS

ap(A).
(b) If A† has SVEP, then σS

ka(A) = σS
su(A),

(c) If A and A† have SVEP, then σS
ka(A) = σS(A).

Proof. (a) Suppose A has SVEP, then by Proposition 7.11, S(A) = ∅. By Eq.
(7.5) and Proposition 7.3 we have

σS
ap(A) \ S(A) ⊆ σS

ka(A) ⊆ σS
ap(A).

Therefore σS
ap(A) = σS

ka(A).
(b) Similarly, if A† has SVEP then S(A†) = ∅. But by Proposition 7.12
part(a), Proposition 4.10 part (b) and Eq. (7.6), we have

σS
su(A) \ S(A†) ⊆ σS

ka(A) ⊆ σS
su(A),

and hence σS
ka(A) = σS

su(A).
(c) If A and A† have SVEP, then by Proposition 6.8 part (d) and by the
above two parts we get σS

ka(A) = σS(A). �
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Remark 7.14. Let A ∈ B(V R
H

) be a non-invertible surjective isometry and A
has SVEP. Then by Remark 4.16 we have σS

ap(A) ⊆ ∂BH(0, 1) and σS(A) =
∇H(0, 1). Further, from Proposition 4.4, we have ∂σS(A) ⊆ σS

ap(A). There-
fore, from Corollary 7.13, σS

ka(A) = σS
ap(A) = {q ∈ H | |q| = 1} = ∂BH(0, 1).

Also, in this case, ρS
ka(A)∩σS(A) = (H\{q ∈ H | |q| = 1})∩∇H(0, 1) = {q ∈

H | |q| < 1} = BH(0, 1).

Theorem 7.15. Let A ∈ B(V R
H

), M and N be two A-invariant closed sub-
spaces of V R

H
and V R

H
= M ⊕ N . Then A is semi-regular if and only if A|M

and A|N are semi-regular. Consequently, σS
ka(A) = σS

ka(A|M ) ∪ σS
ka(A|N ).

Proof. The equality ker(A|M ) = M ∩ ker(A) is trivial. Let us show that
A(M) = M ∩ A(V R

H
). Since M is A-invariant, trivially A(M) ⊆ M ∩ A(V R

H
).

Conversely, if ψ ∈ M ∩ A(V R
H

), then ψ ∈ M and ψ = A(φ) for some φ ∈ V R
H

.
Write φ = φ1+φ2 with φ1 ∈ M and φ2 ∈ N . Then ψ = A(φ) = A(φ1)+A(φ2),
and since A(φ1) ∈ M we have A(φ2) = ψ −A(φ1) ∈ M ∩N = {0}. Therefore
ψ = A(φ1) ∈ A(M). Thus A(M) = M ∩ A(V R

H
). By induction we have

(A|M )n(M) = An(M) = M ∩ An(V R
H

) for all n ∈ N. Assume that A is
semi-regular. Then

ker(A|M ) = M ∩ ker(A) ⊆ M ∩ An(V R
H

) = (A|M )n(V R
H

) for all n ∈ N.

Moreover (A|M )(M) = M ∩ A(V R
H

) is closed, and hence A|M is semi-regular.
In the same way we obtain that A|N is semi-regular. Conversely, if A|M and
A|N are semi-regular, then A(V R

H
) = A(M) ⊕ A(N) is closed and

ker(A) = ker(A|M ) ⊕ ker(A|N ) ⊆ An(M) ⊕ An(N) = An(V R
H

)

for all n ∈ N. Therefore A is semi-regular. As a consequence Rq(A) is semi-
regular if and only if Rq(A)|M and Rq(A)|N are semi-regular. Therefore
σS

ka(A) = σS
ka(A|M ) ∪ σS

ka(A|N ). �

8. Generalized Kato Decomposition

In this section we introduce an important property of decomposition for
bounded operators which involves the concept of semi-regularity and nilpo-
tent nature. We define the generalized Kato decomposition in the quater-
nionic setting following its complex counterpart. For the complex theory we
refer the reader to [2,6].

Definition 8.1. An operator A ∈ B(V R
H

) is said to be nilpotent of order d ∈ N

if Ad = 0 while Ad−1 �= 0. It is said to be quasi-nilpotent if lim
n→∞ ‖An‖1/n = 0.

Proposition 8.2. Let A ∈ B(V R
H

). If A is quasi-nilpotent then σS(A) = {0}.
Proof. The S-spectral radius of A ∈ B(V R

H
) is defined as rS(A) = sup{|q| | q ∈

σS(A)}, see [12] page 90. By Theorem 4.2.3 of [12], rS(A) = lim
n→∞ ‖An‖1/n.

Therefore, if A is quasi-nilpotent, then rS(A) = 0, and hence σS(A) = {0}.
�
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Definition 8.3. An operator A ∈ B(V R
H

) is said to admit a generalized Kato
decomposition, abbreviated as GKD, if there exists a pair of A-invariant
closed right linear subspaces (M,N) such that V R

H
= M ⊕N , the restrictions

A|M is semi-regular and A|N is quasi-nilpotent.

For example, every semi-regular operator has a GKD M = V R
H

and
N = {0}. Every quasi-nilpotent operator has a GKD, M = {0} and N = V R

H
.

Definition 8.4. In Definition 8.3, if A|N is nilpotent then there exists d ∈ N

such that (A|N )d = 0. In this case A is said to be Kato type of order d. In
general any such operator is said to be of Kato type.

Definition 8.5. An operator A ∈ B(V R
H

) is said to be essentially semi-regular
if it admits a GKD (M,N) such that N is finite dimensional.

Proposition 8.6. Every quasi-nilpotent operator on a finite dimensional V R
H

is nilpotent.

Proof. Suppose V R
H

is finite dimensional, dim(V R
H

) = n < ∞ and A ∈ B(V R
H

)
is quasi-nilpotent. Then σS(A) = {0}, also A is an n×n quaternionic matrix.
Since σS(A) = {0}, by the Jordan canonical form, A is similar to a matrix
whose only non-zero entries are on the super-diagonal (see [4] section 4.3). In
turn this is equivalent to Ak = 0 for some k ∈ N. �

Remark 8.7. From Proposition 8.6, if A ∈ B(V R
H

) is essentially semi-regular
then A|N is nilpotent. Thus we have the following implications:
A is semi-regular ⇒ A is essentially semi-regular ⇒ A is of Kato type.

Theorem 8.8. Suppose that (M,N) is a GKD for A ∈ B(V R
H

). Then we have

(a) K(A) = K(A|M ) and K(A) is closed.
(b) ker(A|M ) = ker(A) ∩ M = K(A) ∩ ker(A)

Proof. A proof follows its complex counterpart. For a complex proof see The-
orem 1.41 in [2]. �

Theorem 8.9. Let A ∈ B(V R
H

), and assume that A is of Kato type of order
d ∈ N with a GKD (M,N). Then,

(a) K(A) = A∞(V R
H

);
(b) ker(A|M ) = ker(A) ∩ A∞(V R

H
) = ker(A) ∩ An(V R

H
) for all d ≤ n ∈ N;

(c) A(V R
H

) + ker(An) = A(M) ⊕ N for all d ≤ n ∈ N. Moreover A(V R
H

) +
ker(An) is closed in V R

H
.

Proof. A proof follows its complex counterpart. For a complex proof see The-
orem 1.42 in [2]. �

Theorem 8.10. Let A ∈ B(V R
H

) be of Kato type. Then there exists an open
quaternion sphere BH(0, ε) ⊆ H for which Rq(A) is semi-regular for all q ∈
BH(0, ε) \ {0}.
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Proof. Let (M,N) be a GKD for A such that A|N is nilpotent.
Claim: Rq(A)(V R

H
) is closed for all q ∈ H for which γ(A|M ) > β(q).

Since A|N is nilpotent, Rq(A|N ) is bijective for all q �= 0. Thus, N =
Rq(A|N )(N) for all q �= 0, and therefore

Rq(A)(V R
H

) = Rq(A)(M) ⊕ Rq(A)(N) = Rq(A)(M) ⊕ N, for all q �= 0.

By assumption A|M is semi-regular, so by Theorem 7.6 Rq(A|M ) is semi-
regular for all q for which γ(A|M ) > β(q). So Rq(A|M ) is a closed subspace
of M for all q for which γ(A|M ) > β(q). Consider the Hilbert space M × N
provided with the canonical norm

‖(φ, ψ)‖ = ‖φ‖ + ‖ψ‖, φ ∈ M, ψ ∈ N

and let Ψ : M × N −→ M ⊕ N = V R
H

denote the topological isomorphism
defined by Ψ(φ, ψ) = φ + ψ for every φ ∈ M and ψ ∈ N . Then, for all q for
which γ(A|M ) > β(q), since the set Rq(A)(M) × N is closed in M × N , the
set

Ψ(Rq(A)(M) × N) = Rq(A)(M) ⊕ N = Rq(A)(V R
H

)

is closed.
Claim: There is an open ball BH(0, ε) such that N∞(Rq(A)) ⊆ Rq(A)∞(V R

H
)

for all q ∈ BH(0, ε) \ {0}.
Since A is of Kato type, by Theorem 8.8 and Theorem 8.9, the hyper-

range is closed and coincides with K(A), consequently by Theorem 5.21,
A(A∞(V R

H
)) = A∞(V R

H
). Let A0 = A|A∞(V R

H
). The operator A0 is onto and

hence, by part (b) of Proposition 7.5, Rq(A0) is onto for all q for which
γ(A0) > β(q). Therefore Rq(A)(A∞(V R

H
)) = A∞(V R

H
) for all q for which

γ(A0) > β(q). Then, by Theorem 5.22, A∞(V R
H

) is closed, and we infer that
A∞(V R

H
) ⊆ K(Rq(A)) ⊆ Rq(A)∞(V R

H
) for all q for which γ(A0) > β(q). By

Theorem 5.4 part (b), we conclude that

N∞(Rq(A)) ⊆ (A2)∞(V R
H

) ⊆ A∞(V R
H

) ⊆ Rq(A)∞(V R
H

) (8.1)

for all q �= 0 for which γ(A0) > β(q). The inclusion in Equation (8.1)
together with Rq(A)(V R

H
) being closed for all q for which γ(A|M ) > β(q),

then imply the semi-regularity of Rq(A) for 0 < |q| ≤ β(q) < ε, where
ε = min{γ(A0), γ(A|M )} > 0. �
Definition 8.11. Let A ∈ B(V R

H
), then the generalized Kato S-spectrum is

defined as

σS
gk(A) = {q ∈ H | Rq(A) is not of Kato type}

and the generalized Kato S-resolvent is ρS
gk(A) = H \ σS

gk(A). The essentially
S-semi-regular spectrum and its resolvent are defined, respectively, by

σS
es(A) = {q ∈ H | Rq(A) is not essentially semi-regular}

and ρS
es(A) = H \ σS

es(A).

From Remark 8.7, clearly, for A ∈ B(V R
H

), we have

σS
gk(A) ⊆ σS

es(A) ⊆ σS
ka(A) ⊆ σS(A).
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Corollary 8.12. If A ∈ B(V R
H

), then σS
gk(A) and σS

es(A) are compact subsets
of σS(A). Moreover, σS

ka(A) \σS
gk(A) and σS

es(A) \σS
gk(A) consists of at most

countably many isolated points.

Proof. From Theorem 8.10, clearly ρS
gk(A) = H \ σS

gk(A) and ρS
es(A) = H \

σS
es(A) are open subsets of H, and hence σS

gk(A) and σS
es(A) are closed subsets

of the compact set σS(A). Therefore, σS
gk(A) and σS

es(A) are compact subsets
of σS(A). If q0 ∈ σS

es(A) \ σS
gk(A) then Rq(A) is semi-regular as q belongs to

a suitable punctured ball centered at q0. Hence, σS
es(A) \ σS

gk(A) consists of
at most countably many isolated points, and the same argument is true for
σS

ka(A) \ σS
gk(A). �

9. Conclusion

We have studied the surjectivity S-spectrum, Kato S-spectrum, generalized
Kato spectrum, essentially semi-regular S-spectrum and approximate S-point
spectrum of a bounded right linear operator on a right quaternionic Hilbert
space V R

H
without introducing a left multiplication in V R

H
. We have also

established various connections between these spectra. In particular, we have
proved that the Kato S-spectrum is a non-empty compact subset of the S-
spectrum.

We have also introduced and studied local S-spectrum σA(φ) at a point
φ ∈ V R

H
and the local S-spectral subspace XA(F ) of a bounded right linear

operator A associated with a set F to certain extent. In the complex theory,
the local spectrum σA(φ) and local spectral set XA(F ) play an important
part, as theory itself, in establishing several important results regarding the
Kato, generalized Kato and many other parts of the spectrum. In particular,
the equality, for a vector φ in the complex Hilbert space H and λ ∈ C,

σA(φ) = σA(f(λ)), (9.1)

where f : U −→ H is an analytic function defined in an open neighborhood
U of λ for which (A − λIH)f(μ) = φ for all μ ∈ U , see Theorem 2.2 in
[2] or Theorem 1.2.14 in [21]. Unfortunately, under the current set up of
the manuscript, we have experienced difficulty in establishing an identity
similar to Eq. (9.1). This fact have affected our ability in establishing several
results valid in the complex case to quaternions. In particular, we have shown
that the generalized Kato S-spectrum is a compact subset of the S-spectrum,
however, we were unable to show that the non-isolated points of ∂σS(A)
belongs to σS

gk(A) which is the case in the complex setting.
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