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a b s t r a c t

In this paper we define the quaternionic Cayley transformation of a densely defined,
symmetric, quaternionic right linear operator and formulate a general theory of defect
number in a right quaternionic Hilbert space. This study investigates the relation between
the defect number and S-spectrum, and the properties of the Cayley transform in the
quaternionic setting.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Self-adjoint operators play an important role in the Dirac–von Neumann formulation of quantummechanics. In complex
and in quaternionic quantummechanics states are described by vectors of a separable complex (resp. quaternionic) Hilbert
space and the observables are represented by self-adjoint operators on the respective Hilbert space. By Stone’s theorem on
one parameter unitary groups, self-adjoint operators are the infinitesimal generators of unitary groups of time evolution.

The self-adjointness in a Hilbert space is stronger than being symmetric. Even though the difference is a technical issue,
it is very important. For example, the spectral theorem only applies to self-adjoint operators but not to symmetric operators.
In this regard, the following question arises in several contexts: if an operator A on a Hilbert space is symmetric, when does
it have self-adjoint extensions? In the complex case, an answer is provided by the Cayley transform of a self-adjoint operator
and the deficiency indices.

Due to the non-commutativity, in the quaternionic case there are three types of Hilbert spaces: left, right, and two-sided,
depending on how vectors aremultiplied by scalars. This fact can entail several problems. For example, when a Hilbert space
H is one-sided (either left or right) the set of linear operators acting on it does not have a linear structure. Moreover, in a
one sided quaternionic Hilbert space, given a linear operator T and a quaternion q ∈ H, in general we have that (qT )† ̸= qT †
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(see [1] for details). These restrictions can severely prevent the generalization to the quaternionic case of results valid in the
complex setting. Even thoughmost of the linear spaces are one-sided, it is possible to introduce a notion of multiplication on
both sides by fixing an arbitrary Hilbert basis of H. This fact allows to have a linear structure on the set of linear operators,
which is a minimal requirement to develop a full theory. Thus, the framework of this paper is a right quaternionic Hilbert
space equipped with a left multiplication, introduced by fixing a Hilbert basis. As in the complex case, one may introduce a
suitable notion of Cayley type transform of symmetric linear operators. The idea of considering Cayley transform of linear
operators is due to von Neumann [2] who formally replaced the variable in a Cayley transform by a symmetric operator. The
idea was further extended to other types of linear operators but always with the purpose of getting information of the given
operator by studying the properties of its Cayley transform. A quaternionic Cayley transform of linear operators appeared
in [3,4]; however, the type of transform and the underlying notion of spectrum differ from the one treated in this paper.

In this paper, we define the Cayley transform of densely defined symmetric operators satisfying suitable assumptions.
We will prove that this notion of Cayley transform possesses several properties, in particular it is an isometry and allows to
prove a characterization of self-adjointness.

The plan of the paper is the following. The paper consists of four sections, besides the Introduction. In Section 2 we
collect some preliminary notations and results on quaternions, quaternionic Hilbert spaces andHilbert bases. In Section 3we
introduce right linear operators and some of their properties, the left multiplication, we introduce the notion of deficiency
subspace and defect number of an operator at a point also proving some new results in this framework. In Section 4 we
study the deficiency indices of isometric operators and we define the notion of quaternionic Cayley transform for a linear
symmetric operator (satisfying suitable hypotheses) and study its main properties. In particular, we show that a linear
operator is self-adjoint if and only if its Cayley transform is unitary. In the fifth and last section, we show that the Cayley
transform that we have defined based on the choice of a Hilbert basis, in order to have a left multiplication and thus a
two-sided Hilbert space, in fact does not depend on this choice.

2. Mathematical preliminaries

In order to make the paper self-contained, we recall some facts about quaternions which may not be well-known. For
details we refer the reader to [5–7].

2.1. Quaternions

LetHdenote the field of all quaternions andH∗ the group (under quaternionicmultiplication) of all invertible quaternions.
A general quaternion can be written as

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R,

where i, j, k are the three quaternionic imaginary units, satisfying i2 = j2 = k2
= −1 and ij = k = −ji, jk = i =

−kj, ki = j = −ik. The quaternionic conjugate of q is

q = q0 − iq1 − jq2 − kq3,

while |q| = (qq)1/2 denotes the usual norm of the quaternion q. If q is non-zero element, it has inverse q−1
=

q

|q|2
. Finally,

the set

S = {I = x1i + x2j + x3k | x1, x2, x3 ∈ R, x21 + x22 + x23 = 1},

contains all the elements whose square is −1. It is a 2-dimensional sphere in H identified with R4.

2.2. Quaternionic Hilbert spaces

In this subsection we discuss right quaternionic Hilbert spaces. For more details we refer the reader to [5–7].

2.2.1. Right quaternionic Hilbert Space
Let V R

H be a vector space under right multiplication by quaternions. For φ,ψ,ω ∈ V R
H and q ∈ H, the inner product

⟨· | ·⟩ : V R
H × V R

H −→ H

satisfies the following properties:

(i) ⟨φ | ψ⟩ = ⟨ψ | φ⟩

(ii) ∥φ∥
2

= ⟨φ | φ⟩ > 0 unless φ = 0, a real norm
(iii) ⟨φ | ψ + ω⟩ = ⟨φ | ψ⟩ + ⟨φ | ω⟩

(iv) ⟨φ | ψq⟩ = ⟨φ | ψ⟩q

(v) ⟨φq | ψ⟩ = q⟨φ | ψ⟩
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where q stands for the quaternionic conjugate. It is always assumed that the space V R
H is complete under the norm given

above and separable. Then, together with ⟨· | ·⟩ this defines a right quaternionic Hilbert space. Quaternionic Hilbert spaces
share many of the standard properties of complex Hilbert spaces.

The next two propositions can be established following the proof of their complex counterparts, see e.g. [6,7].

Proposition 2.1. Let O = {ϕk | k ∈ N} be an orthonormal subset of V R
H, where N is a countable index set. Then following

conditions are pairwise equivalent:

(a) The closure of the linear combinations of elements in O with coefficients on the right is V R
H.

(b) For every φ,ψ ∈ V R
H, the series

∑
k∈N⟨φ | ϕk⟩⟨ϕk | ψ⟩ converges absolutely and it holds:

⟨φ | ψ⟩ =

∑
k∈N

⟨φ | ϕk⟩⟨ϕk | ψ⟩.

(c) For every φ ∈ V R
H, it holds:

∥φ∥
2

=

∑
k∈N

| ⟨ϕk | φ⟩|
2.

(d) O⊥
= {0}.

Definition 2.2. The set O as in Proposition 2.1 is called a Hilbert basis of V R
H.

Proposition 2.3. Every quaternionic Hilbert space V R
H has a Hilbert basis. All the Hilbert bases of V R

H have the same cardinality.
Furthermore, if O is a Hilbert basis of V R

H, then every φ ∈ V R
H can be uniquely decomposed as follows:

φ =

∑
k∈N

ϕk⟨ϕk | φ⟩,

where the series
∑

k∈Nϕk⟨ϕk | φ⟩ converges absolutely in V R
H.

It should be noted that once a Hilbert basis is fixed, every left (resp. right) quaternionic Hilbert space also becomes a right
(resp. left) quaternionic Hilbert space [6,7]. See next Section 3.2 for more details.

The field of quaternions H itself can be turned into a left quaternionic Hilbert space by defining the inner product
⟨q | q′

⟩ = qq′ or into a right quaternionic Hilbert space with ⟨q | q′
⟩ = qq′.

3. Right quaternionic linear operators and some basic properties

In this sectionwe shall define rightH-linear operators and recall somebasis properties.Most of themare verywell known.
In this manuscript, we follow the notations in [8,6]. We shall also prove some results pertinent to the development of the
paper. To the best of our knowledge the results we prove in Sections 3.3 and 3.4 do not appear in the literature.

Definition 3.1. A mapping A : D(A) ⊆ V R
H −→ V R

H, where D(A) stands for the domain of A, is said to be right H-linear
operator or, for simplicity, right linear operator, if

A(φa + ψb) = (Aφ)a + (Aψ)b, if φ, ψ ∈ D(A) and a, b ∈ H.

The set of all right linear operators will be denoted by L(V R
H) and the identity linear operator on V R

H will be denoted by
IVR

H
. For a given A ∈ L(V R

H), the range and the kernel will be

ran(A) = {ψ ∈ V R
H | Aφ = ψ for φ ∈ D(A)}

ker(A) = {φ ∈ D(A) | Aφ = 0}.

We call an operator A ∈ L(V R
H) bounded if

∥A∥ = sup
∥φ∥=1

∥Aφ∥ < ∞,

or equivalently, there exist K ≥ 0 such that ∥Aφ∥ ≤ K∥φ∥ for all φ ∈ D(A). The set of all bounded right linear operators will
be denoted by B(V R

H).
Assume that V R

H is a right quaternionic Hilbert space, A is a right linear operator acting on it. Then, there exists a unique
linear operator A† such that

⟨ψ | Aφ⟩ = ⟨A†ψ | φ⟩; for all φ ∈ D(A), ψ ∈ D(A†), (3.1)

where the domain D(A†) of A† is defined by

D(A†) = {ψ ∈ V R
H | ∃ϕ such that ⟨ψ | Aφ⟩ = ⟨ϕ | φ⟩}.
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3.1. Symmetry and self-adjointness

Let A : D(A) −→ V R
H and B : D(B) −→ V R

H be quaternionic linear operators. As usual, we write A ⊂ B if D(A) ⊂ D(B) and
B|D(A) = A. In this case, B is said to be an extension of A.

Definition 3.2. A right linear operator A : D(A) −→ V R
H with dense domain is said to be

(a) symmetric, if A ⊂ A†.
(b) anti-symmetric, if A ⊂ −A†.
(c) self-adjoint, if A = A†.
(d) unitary, if D(A) = V R

H and A A†
= A†A = IVR

H
.

(e) closed, if the graph G := D(A) ⊕ ran(A) of A is closed in V R
H × V R

H, equipped with the product topology.
(f) closable, if it admits closed operator extensions. In this case, the closure A of A is the smallest closed extension and its

domain and action are

• D(A) := {φ ∈ V R
H | ∃ψ ∈ V R

H s.t. ∀ {φn} ⊂ D(A) with φn → φ, Aφn → ψ}

• Aφ = ψ .

Proposition 3.3. A right linear operator A : D(A) −→ V R
H is closed if and only if for any sequence {φn} inD(A) such that φn −→ φ

with Aφn = ψn −→ ψ in V R
H, then ψ = Aφ.

Proof. It is straightforward from the definition of closed operators. □

Proposition 3.4. Let A : D(A) −→ V R
H be densely defined right linear operator. Then

(a) A† is closed.
(b) A is closable if and only if D(A†) is dense in V R

H, and A = A††.
(c) ran(A)⊥ = ker(A†) and ker(A) ⊂ ran(A†)⊥.

Furthermore, if D(A†) is dense in V R
H and A is closed, then ker(A) = ran(A†)⊥.

Proposition 3.5. Let A : D(A) ⊆ V R
H −→ V R

H be a right linear operator. If A is closed and satisfies the condition that there exists
C > 0 such that

∥Aφ∥ ≥ C∥φ∥, (3.2)

for all φ ∈ D(A), then ran(A) is closed.

Proof. Letψ ∈ ran(A), then there exists a sequence {φn} in D(A) such that Aφn −→ ψ . Then by (3.2), we know that {φn} is a
Cauchy sequence in V R

H as {Aφn} is Cauchy. Therefore φn −→ φ for some φ ∈ V R
H. From the Proposition 3.3, we have Aφ = ψ .

This completes the proof. □

Proposition 3.6. The right linear operator A : D(A) ⊆ V R
H −→ V R

H is symmetric if and only if ⟨Aφ | φ⟩ ∈ R, for all φ ∈ D(A).

Proof. If A is symmetric, then the statement has been proved in [6], Proposition 2.17 (b), but since the proof is short, we
repeat it for completeness: for any φ ∈ D(A), ⟨Aφ | φ⟩ = ⟨φ | Aφ⟩ = ⟨Aφ | φ⟩. That is, ⟨Aφ | φ⟩ ∈ R, for all φ ∈ D(A). To
show the converse, suppose that ⟨Aφ | φ⟩ ∈ R, for all φ ∈ D(A). The polarization identity (see, for example, [6]) is given by
the formula

⟨φ | ψ⟩ =
1
4
(∥φ + ψ∥ − ∥φ − ψ∥) +

1
4

∑
τ=i,j,k

(∥φτ + ψ∥ − ∥φτ − ψ∥)τ, (3.3)

where φ,ψ ∈ V R
H. Now using this identity, we can immediately see that

⟨Aφ | φ⟩ = ⟨φ | Aφ⟩, for all φ ∈ D(A),

that is, A is symmetric. Hence the result follows. □

3.2. Left scalar multiplications on V R
H

We shall extract the definition and some properties of left scalar multiples of vectors on V R
H from [6] as needed for the

development of the manuscript. The left scalar multiple of vectors on a right quaternionic Hilbert space is an extremely
non-canonical operation associated with a choice of preferred Hilbert basis. From Proposition 2.3, V R

H has a Hilbert basis

O = {ϕk | k ∈ N}, (3.4)
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whereN is a countable index set. The left scalarmultiplication on V R
H induced byO is defined as themapH×V R

H ∋ (q, φ) ↦−→

qφ ∈ V R
H given by

qφ :=

∑
k∈N

ϕkq⟨ϕk | φ⟩, (3.5)

for all (q, φ) ∈ H × V R
H.

Proposition 3.7 ([6]). The left product defined in (3.5) satisfies the following properties. For every φ,ψ ∈ V R
H and p, q ∈ H,

(a) q(φ + ψ) = qφ + qψ and q(φp) = (qφ)p.
(b) ∥qφ∥ = |q|∥φ∥.
(c) q(pφ) = (qp)φ.
(d) ⟨qφ | ψ⟩ = ⟨φ | qψ⟩.
(e) rφ = φr, for all r ∈ R.
(f) qϕk = ϕkq, for all k ∈ N.

Remark 3.8. (1) In more rigorous terms, instead of pφ wewill write p ·φ, because the notation from (3.5) may be confusing,
when V R

H = H. However, regarding the field H itself as a right H-Hilbert space, an orthonormal basis O should consist
only of a singleton, say {ϕ0}, with |ϕ0| = 1, because we clearly have θ = ϕ0⟨ϕ0 | θ⟩, for all θ ∈ H. The equality from (f) of
Proposition 3.7 can bewritten as pϕ0 = ϕ0p, for all p ∈ H. In fact, the left handmay be confusing and it should be understood
as p ·ϕ0, because the true equality pϕ0 = ϕ0pwould imply that ϕ0 = ±1. For simplicity, we arewriting pφ instead of writing
p · φ.
(2) Also one can trivially see that (p + q)φ = pφ + qφ, for all p, q ∈ H and φ ∈ V R

H.

Furthermore, the quaternionic left scalar multiplication of linear operators is also defined in [6,9]. For any fixed q ∈ H
and a given right linear operator A : D(A) −→ V R

H, the left scalar multiplication of A is defined as a map qA : D(A) −→ V R
H

by the setting

(qA)φ := q(Aφ) =

∑
k∈N

ϕkq⟨ϕk | Aφ⟩, (3.6)

for all φ ∈ D(A). It is straightforward that qA is a right linear operator. If qφ ∈ D(A), for all φ ∈ D(A), one can define right
scalar multiplication of the right linear operator A : D(A) −→ V R

H as a map Aq : D(A) −→ V R
H by the setting

(Aq)φ := A(qφ), (3.7)

for all φ ∈ D(A). It is also right linear operator. One can easily obtain that, if qφ ∈ D(A), for all φ ∈ D(A) and D(A) is dense in
V R
H, then

(qA)† = A†q and (Aq)† = qA†. (3.8)

Proposition 3.9 ([10]). Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric operator with the property that
iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A) and q = q0 + iq1 + jq2 + kq3 ∈ H.

(a) If iA, jA and kA are anti-symmetric, then (qA)† = qA, qA = Aq and

∥(A − qIVR
H
)φ∥

2
= ∥(A − q0IVR

H
)φ∥

2
+ (q21 + q22 + q23)∥φ∥

2,

for all φ ∈ D(A).
(b) If qA is anti-symmetric, then

∥(A − qIVR
H
)φ∥

2
= ∥Aφ∥

2
+ |q|

2
∥φ∥

2

for all φ ∈ D(A).
(c) If qA is anti-symmetric, then

∥(A − qIVR
H
)φ∥

2
= ∥Aφ∥

2
+ |q|

2
∥φ∥

2

for all φ ∈ D(A).

Proposition 3.10 ([10]). Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined symmetric right linear operator with the property that
iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A). If the operators iA, jA and kA are anti-symmetric, then for any q = q0 + iq1 + jq2 +kq3 ∈ H
with q21 + q22 + q23 ̸= 0, the following statements are equivalent:

(a) A is self-adjoint.
(b) A is closed and ker(A†

− qIVR
H
) = {0} and ker(A†

− qIVR
H
) = {0}.

(c) ran(A − qIVR
H
) = ran(A − qIVR

H
) = V R

H.
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3.3. Regular points and defect numbers of quaternionic linear operators

Definition 3.11. Let A : D(A) ⊆ V R
H −→ V R

H be a right linear operator. A quaternion q is called a regular point for A if there
exists a number cq > 0 such that

∥(A − qIVR
H
)φ∥ ≥ cq∥φ∥, (3.9)

for all φ ∈ D(A). The set of regular points of A is the regular domain of A and it is denoted byΠ (A).

Definition 3.12. LetA : D(A) ⊆ V R
H −→ V R

H be a right linear operator. Forq ∈ Π (A),we call the linear subspace ran(A−qIVR
H
)⊥

of V R
H the deficiency subspace of A at q and its dimension dq(A) = dim ran(A − qIVR

H
)⊥ is the defect number of A at q.

The following proposition discusses some basic properties of the above definitions:

Proposition 3.13. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear operator and q ∈ H.

(a) If q0 ∈ Π (A) such that |q − q0| < cq0 , where cq0 is a constant satisfying (3.9), then q ∈ Π (A). That is, Π (A) is an open
subset of H.

(b) If A is closable, thenΠ (A) = Π (A), dq(A) = dq(A) and

ran(A − qIVR
H
) = ran(A − qIVR

H
),

for all q ∈ Π (A).
(c) If A is closed and q ∈ Π (A), then ran(A − qIVR

H
) is a closed linear subspace of V R

H.

Proof. (a) Suppose that q0 ∈ Π (A) such that |q − q0| < cq0 where cq0 is a constant satisfying (3.9). Let φ ∈ D(A), then we
have

∥(A − qIVR
H
)φ∥ = ∥(A − q0IVR

H
)φ − (q − q0)φ∥ ≥ ∥(A − q0IVR

H
)φ∥ − |q − q0|∥φ∥

≥ (cq0 − |q − q0|)∥φ∥.

Thus q ∈ Π (A) as |q − q0| < cq0 . From this, we can say thatΠ (A) ⊆ Π (A)◦-interior set ofΠ (A). Therefore (a) follows.
(b) Let ψ ∈ ran(A − qIVR

H
). Then there exists a sequence {ψn} ⊂ ran(A − qIVR

H
) such that ψn −→ ψ as n −→ ∞. Now for

each n ∈ N, there exists φn ∈ D(A) such that ψn = (A − qIVR
H
)φn. By (3.9), we have, for anym, n ∈ N

∥φm − φn∥ ≤ c−1
q ∥(A − qIVR

H
)(φm − φn)∥ = c−1

q ∥ψm − ψn∥.

From this, {φn} is a Cauchy sequence, because {ψn} is a Cauchy sequence. Then {φn} is convergent and take φ = limnφn. Since
limnAφn = limn(ψn + qφn) = ψ + qφ and A is closable, we have φ ∈ D(A) and Aφ = ψ + qφ. Thus ψ = (A − qIVR

H
)φ ∈

ran(A− qIVR
H
). This proves that ran(A − qIVR

H
) ⊆ ran(A− qIVR

H
). On the other hand, takeψ ∈ ran(A− qIVR

H
), then there exists

φ ∈ D(A) such that ψ = (A − qIVR
H
)φ. By the definition of A, we have for all {φn} ⊂ D(A) with φn −→ φ, Aφn −→ Aφ. From

this, the converse inclusion follows immediately. Therefore,

ran(A − qIVR
H
) = ran(A − qIVR

H
).

Let q ∈ Π (A), then there exists a number cq > 0 such that

∥(A − qIVR
H
)φ∥ ≥ cq∥φ∥,

for all φ ∈ D(A). Now take φ ∈ D(A), then Aφn −→ Aφ, for all {φn} ⊂ D(A) with φn −→ φ, and for each n ∈ N,

∥(A − qIVR
H
)φn∥ ≥ cq∥φn∥.

Taking limit n −→ ∞ on both sides, we get

∥(A − qIVR
H
)φ∥ ≥ cq∥φ∥,

because qIVR
H
φn =

∑
k∈Nϕkq⟨ϕk | φn⟩ −→

∑
k∈Nϕkq⟨ϕk | φ⟩ = qIVR

H
φ. This proves that Π (A) ⊆ Π (A) and the converse

inclusion immediately follows from the fact that D(A) ⊆ D(A). ThusΠ (A) = Π (A).
Since ran(A−qIVR

H
) ⊆ ran(A−qIVR

H
), it follows that ran(A−qIVR

H
)⊥ ⊆ ran(A−qIVR

H
)⊥. Let us now takeψ ∈ ran(A−qIVR

H
)⊥.

Let ξ ∈ ran(A − qIVR
H
), then there exists φ ∈ D(A) such that ξ = (A − qIVR

H
)φ and Aφn −→ Aφ, for all {φn} ⊂ D(A) with

φn −→ φ. If we take ξn = (A − qIVR
H
)φn, for all n ∈ N, then ⟨ψ | ξn⟩ = 0, for all n ∈ N. But ⟨ψ | ξn⟩ −→ ⟨ψ | ξ⟩. Thus

⟨ψ | ξ⟩ = 0. That is, ψ ∈ ran(A − qIVR
H
)⊥. Therefore ran(A − qIVR

H
)⊥ = ran(A − qIVR

H
)⊥. Hence dq(A) = dq(A) and point (b)

follows.
(c) Since A is closed, we have A = A. Thus by the result (b), it immediately follows that ran(A−qIVR

H
) is a closed subspace.

Hence the result (c) follows. □
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3.4. S-spectrum of unbounded quaternionic linear Operators

For a given right linear operator A : D(A) ⊆ V R
H −→ V R

H and q ∈ H, we define the operator Qq(A) : D(A2) −→ H by

Qq(A) = A2
− 2Re(q)A + |q|

2IVR
H
,

where q = q0 + iq1 + jq2 +kq3 is a quaternion, Re(q) = q0 and |q|
2

= q20 + q21 + q22 + q23. In the literature, the operator Qq(A)
is sometimes also denoted by Rq(A) and it is called pseudo-resolvent since it is not the resolvent operator of A but it is the
one related to the notion of spectrum as we shall see in the next definition. The notion of S-spectrum has been introduced
by one of the authors and her collaborators. For more information, the reader may consult e.g. [9,11,12,6].

Definition 3.14. Let A : D(A) ⊆ V R
H −→ V R

H be a right linear operator. The S-resolvent set (also called spherical resolvent set)
of A is the set ρS(A) (⊂ H) such that the three following conditions hold true:

(a) ker(Qq(A)) = {0}.
(b) ran(Qq(A)) is dense in V R

H.
(c) Qq(A)−1

: ran(Qq(A)) −→ D(A2) is bounded.

The S-spectrum (also called spherical spectrum) σS(A) of A is defined by setting σS(A) := H ∖ ρS(A). It decomposes into
three disjoint subsets as follows:

(i) the spherical point spectrum of A:

σpS(A) := {q ∈ H | ker(Qq(A)) ̸= {0}}.

(ii) the spherical residual spectrum of A:

σrS(A) := {q ∈ H | ker(Qq(A)) = {0}, ran(Qq(A)) ̸= V R
H }.

(iii) the spherical continuous spectrum of A:

σcS(A) := {q ∈ H | ker(Qq(A)) = {0}, ran(Qq(A)) = V R
H,Qq(A)−1

̸∈ B(V R
H) }.

If Aφ = φq for some q ∈ H and φ ∈ V R
H ∖ {0}, then φ is called an eigenvector of A with right eigenvalue q. The set of right

eigenvalues coincides with the point S-spectrum, see [6], Proposition 4.5.

Proposition 3.15 ([6,8]). Let A ∈ L(V R
H ) and A be self-adjoint, then σS(A) ⊂ R.

Proposition 3.16. Let A : D(A) ⊆ V R
H −→ V R

H be right linear operator with the property that iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A),
and q ∈ H. Then the pseudo-resolvent operator Qq(A) of A can be written as follows:

Qq(A) =
1
2

[
(A − qIVR

H
)(A − qIVR

H
) + (A − qIVR

H
)(A − qIVR

H
)
]
. (3.10)

Furthermore, if A is densely defined, closed and symmetric with D(A2) = V R
H, thenΠ (A) ⊆ ρS(A).

Proof. Formula (3.10) has been proved in [13], Proposition 5.9. To prove the second part of the statement, suppose that A is
a densely defined closed symmetric operator then, using Cauchy–Schwarz inequality, we have for any φ ∈ D(A2),

∥Qq(A)φ∥∥φ∥ ≥ ⟨Qq(A)φ | φ⟩

=
1
2
⟨(A − qIVR

H
)(A − qIVR

H
)φ | φ⟩ +

1
2
⟨(A − qIVR

H
)(A − qIVR

H
)φ | φ⟩

=
1
2
∥(A − qIVR

H
)φ∥

2
+

1
2
∥(A − qIVR

H
)φ∥

2.

That is, for any q ∈ H and φ ∈ D(A2),

∥Qq(A)φ∥∥φ∥ ≥
1
2
∥(A − qIVR

H
)φ∥

2
+

1
2
∥(A − qIVR

H
)φ∥

2. (3.11)

Thus, if q ∈ Π (A), then there exists cq > 0 such that (3.9) holds. Let φ ∈ D(A2), then

∥Qq(A)φ∥∥φ∥ ≥
1
2
∥(A − qIVR

H
)φ∥

2
≥

c2q
2

∥φ∥
2.

This is equivalent to say that for every φ ∈ D(A2),

∥Qq(A)φ∥ ≥
c2q
2

∥φ∥. (3.12)
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for all φ ∈ D(A). From this, we have

ran(A − qIVR
H
)⊥ × ran(A − qIVR

H
)⊥ = ker(A − qIVR

H
) × ker(A − qIVR

H
) = {0} × {0}

as A is self-adjoint (i.e. A = A†). Hence dq(A) = dq(A) = 0 and this completes the proof. □

Proposition 3.20. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear closed symmetric operator. Then

{q ∈ H | q, q ∈ Π (A) and dq(A) = dq(A) = 0} ⊆ ρS(A).

Proof. It follows from Propositions 3.16 and 3.19. □

4. The quaternionic Cayley transform

Proposition 4.1. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric operator with the property that
iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A). If the operators iA, jA and kA are anti-symmetric, then

H ∖ R ⊆ Π (A).

Proof. From (a) in Proposition 3.9, we have, for every q ∈ H ∖ R,

∥(A − qIVR
H
)φ∥ ≥

√
(q21 + q22 + q23)∥φ∥,

for all φ ∈ D(A). This suffices to conclude the proof. □

Let λ = λ0 + λ1i + λ2j + λ3k ∈ H be a quaternion such that λt > 0 : t = 1, 2, 3.

Definition 4.2. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined closed symmetric right linear operator with the property
that iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A). If the operators iA, jA and kA are anti-symmetric then

n(A) := dλ(A) = dim ran(A − λIVR
H
)⊥. (4.1)

The number n(A) is called deficiency index of A.

We note that, in principle, one could have defined two deficiency indices n+(A) := dλ(A) = dim ran(A − λIVR
H
)⊥,

n−(A) := dλ(A) = dim ran(A − λIVR
H
)⊥, however Theorem 3.18 implies that dλ(A) is constant on each connected component

ofΠ (A) and thus n+(A) = n−(A) = n(A).
Now, we shall verify some elementary facts about linear isometric operators.

Definition 4.3. A right linear operator U : D(U) ⊆ V R
H −→ V R

H is said to be an isometric operator, if ∥Uφ∥ = ∥φ∥, for all
φ ∈ D(U).

The following proposition collects some basic aspects of the right linear isometric operators.

Proposition 4.4. Let U : D(U) ⊆ V R
H −→ V R

H be a right linear isometric operator. Then:

(a) For each φ,ψ ∈ D(U), we have ⟨Uφ | Uψ⟩ = ⟨φ | ψ⟩.
(b) U is invertible and its inverse U−1 is also isometric.
(c) U is closed if and only if D(U) is a closed subspace of V R

H.
(d) H ∖ S ⊆ Π (U).

Proof. (a) Since U is linear and isometric, using the polarization identity (3.3), we can easily obtain the desired relation
⟨Uφ | Uψ⟩ = ⟨φ | ψ⟩, for all φ,ψ ∈ D(U).

(b) and (c) These statements trivially follow.
(d) Since U is an isometry, one can see that

∥(U − µIVR
H
)φ∥ ≥ |∥Uφ∥−|µ|∥φ∥| = |1−|µ||∥φ∥, (4.2)

for all φ ∈ D(U) and µ ∈ H ∖ S. This inequality proves (d). □

Theorem 3.18 implies that the defect numbers of the right linear isometric U : D(U) ⊆ V R
H −→ V R

H are constants on the
interior of S and on the exterior of S. The cardinal numbers

di(U) := dµ(U) = dim ran(U − µIVR
H
)⊥ if |µ| < 1, (4.3)

de(U) := dµ(U) = dim ran(U − µIVR
H
)⊥ if |µ| > 1 (4.4)

are called the deficiency indices of the isometric operator U . The following lemma gives an interesting result about these
numbers.
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Lemma 4.5. If U : D(U) ⊆ V R
H −→ V R

H is a right linear isometric operator, then di(U) = dim ran(U)⊥ and de(U) = dimD(U)⊥.

Proof. If we choose µ = 0 in (4.3), then it follows directly that

di(U) = d0(U) = dim ran(U)⊥.

Now for any fixed µ ∈ Hwith 0 < |µ| < 1, we have

(U−1
− µIVR

H
)Uφ = (IVR

H
− µU)φ = −µ(U − µ−1IVR

H
)φ,

for all φ ∈ D(U). From this, we can obtain ran(U−1
− µIVR

H
) = ran(U − µ−1IVR

H
). Therefore by (4.4),

de(U) = dim ran(U − µ−1IVR
H
)⊥ = dim ran(U−1

− µIVR
H
)⊥.

That is

de(U) = di(U−1) = dim ran(U−1)⊥ = dimD(U)⊥

follows. □

The following lemma shows an important result.

Lemma4.6. If U : D(U) ⊆ V R
H −→ V R

H is a right linear isometric operator and ran(IVR
H
−U) is dense in V R

H, then ker(IVR
H
−U) = {0}.

Proof. If φ ∈ ker(IVR
H

− U), then (IVR
H

− U)φ = 0 and so Uφ = φ. Thus for any ψ ∈ D(U),

⟨(IVR
H

− U)ψ | φ⟩ = ⟨ψ | φ⟩ − ⟨Uψ, φ⟩ = ⟨ψ | φ⟩ − ⟨Uψ,Uφ⟩ = ⟨ψ | φ⟩ − ⟨ψ, φ⟩ = 0.

This is enough to say that φ = 0 as ran(IVR
H

− U) is dense in V R
H. □

Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric operator with the property that iφ, jφ, kφ ∈ D(A),
for all φ ∈ D(A) and the operators iA, jA and kA are anti-symmetric. Since λt > 0 : t = 1, 2, 3 (i.e. λt ̸= 0 : t = 1, 2, 3),
we have λ ∈ Π (A) by Proposition 4.1. Hence, A − λIVR

H
is invertible. Using these facts, the H-Cayley transform is defined as

follows:

Definition 4.7. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric operator with the property that
iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A) and the operators iA, jA and kA are anti-symmetric. The operatorUA : D(UA) ⊆ V R

H −→ V R
H

defined by

UA = (A − λIVR
H
)(A − λIVR

H
)−1, with D(UA) = ran(A − λIVR

H
), (4.5)

is said to be the H-Cayley transform of A. That is, UA is defined by

UA(A − λIVR
H
)φ = (A − λIVR

H
)φ, for all φ ∈ D(A). (4.6)

From now on we use the terminology ‘Cayley transform’ rather than sayingH-Cayley transform. Some useful properties
of the Cayley transform are summarized in the following proposition:

Proposition 4.8. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric operator with the property that
iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A) and the operators iA, jA and kA are anti-symmetric. If UA is the Cayley transform of A, then
the following statements hold:

(a) The Cayley transform UA is an isometric operator on V R
H with domain D(UA) = ran(A − λIVR

H
) and range ran(UA) =

ran(A − λIVR
H
).

(b) ran(IVR
H

− UA) = D(A) and A = (λIVR
H

− λUA)(IVR
H

− UA)−1.
(c) A is closed if and only if UA is closed.
(d) If B is another densely defined right linear symmetric operator with the property that iφ, jφ, kφ ∈ D(B), for all φ ∈ D(B)

and the operators iB, jB and kB be anti-symmetric, then A ⊆ B if and only if UA ⊆ UB.
(e) di(UA) = de(UA) = n(A).

Proof. (a) Let φ ∈ D(A). By (a) in Proposition 3.9, we have

∥(A − λIVR
H
)φ∥

2
= ∥(A − λ0IVR

H
)φ∥

2
+ (λ21 + λ22 + λ23)∥φ∥

2

and one can notice that ∥(A − λIVR
H
)φ∥ = ∥(A − λIVR

H
)φ∥. Take ψ = (A − λIVR

H
)φ, then

∥UAψ∥ = ∥(A − λIVR
H
)φ∥ = ∥(A − λIVR

H
)φ∥ = ∥ψ∥.
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Therefore the Cayley transform UA is isometric. Now,D(UA) = ran(A−λIVR
H
) follows from (4.5) and ran(UA) = ran(A−λIVR

H
)

follows from (4.6).
(b) Let φ ∈ D(A) and ψ = (A − λIVR

H
)φ. Then one can see that

(IVR
H

− UA)ψ = (λ − λ)φ, (4.7)

and this gives ran(IVR
H

− UA) = D(A) by recalling that (λ − λ) ̸= 0. Since D(A) is dense in V R
H and by Lemma 4.6, we have

ker(IVR
H

− U) = {0}. (Observe that this implication could be obtained directly using Eq. (4.7) as well.) Moreover a direct
calculation shows that

(λIVR
H

− λUA)ψ = (λ − λ)Aφ, (4.8)

where ψ = (A − λIVR
H
)φ and φ ∈ D(A). From (4.7) and (4.8), we get, for any φ ∈ D(A),

(λIVR
H

− λUA)(IVR
H

− UA)−1(λ − λ)φ = (λ − λ)Aφ. (4.9)

Statement (a) in Proposition 3.9 gives qA = Aq, and using (4.9) we obtain that

(λIVR
H

− λUA)(IVR
H

− UA)−1(λ − λ)φ = A((λ − λ)φ), (4.10)

for all φ ∈ D(A). For any φ ∈ D(A), one can choose that ξ = (λ − λ)−1φ since (λ − λ) ̸= 0. Since ξ ∈ D(A), it follows that

(λIVR
H

− λUA)(IVR
H

− UA)−1(λ − λ)ξ = A(λ − λ)ξ

from Eq. (4.10). Thereby, using (c) in Proposition 3.7, we obtain that

(λIVR
H

− λUA)(IVR
H

− UA)−1φ = Aφ

andD(A) ⊆ D((λIVR
H
−λUA)(IVR

H
−UA)−1). Now ifφ ∈ D((λIVR

H
−λUA)(IVR

H
−UA)−1) thenφ ∈ D((IVR

H
−UA)−1) = ran(IVR

H
−UA) =

D(A). Thus

D((λIVR
H

− λUA)(IVR
H

− UA)−1) = D(A).

Hence we have proved that A = (λIVR
H

− λUA)(IVR
H

− UA)−1.
(c) On the one hand, since λ,λ ∈ Π (A), by (c) in Proposition 3.13, it follows that, if A is closed, then ran(A − λIVR

H
) and

ran(A− λIVR
H
) are closed subspaces of V R

H. ThusD(UA)⊕ ran(UA) is a closed subspace of V R
H × V R

H by above statement (a), and
so UA is closed. On the other hand, if UA is closed, assume that for a sequence {φn} ⊆ D(A), φn −→ φ with Aφn −→ φ. Since
Aφn −λφn −→ ψ−λφ and UA is closed, we have UA(Aφn −λφn) −→ UA(ψ−λφ). Using the fact that UA is a linear isometry,
we obtain

∥UA(Aφn − λφn) − UA(ψ − λφ)∥ = ∥(Aφn − λφn) − (ψ − λφ)∥.

That is, (Aφn − λφn) −→ (ψ − λφ). Hence Aφn −→ ψ because λφn −→ λφ. Therefore, A is closed.
(d) This follows from formula (4.6).
(e) By Theorem 3.18, Lemma 4.5 and the above statement (a), one obtains that

di(UA) = dλ(UA) = dim ran(UA − λIVR
H
)⊥ = n(A),

de(UA) = dλ(UA) = dim ran(UA − λIVR
H
)⊥ = dλ(UA) = n(A).

Hence the statement follows. □

Nowwe assume that U : D(U) ⊆ V R
H −→ V R

H is a right linear isometric operator and ran(IVR
H

− U) is dense in V R
H. Then by

Lemma 4.6, ker(IVR
H

− U) = {0} and the operator IVR
H

− U is invertible. The operator

AU = (λIVR
H

− λU)(IVR
H

− U)−1 with domain D(AU ) = ran(IVR
H

− U) (4.11)

is called the inverse Cayley transform of U . From this definition we have

AU (IVR
H

− U)ψ = (λIVR
H

− λU)ψ for all ψ ∈ D(U). (4.12)

Next proposition is a consequence of the above discussion on the inverse Cayley transform.
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Proposition 4.9. Let U : D(U) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric and isometric operatorwith the property
that iψ, jψ, kψ ∈ D(U), for all ψ ∈ D(U) and the operators iU, jU and kU are anti-symmetric. Suppose that ran(IVR

H
− U) is

dense in V R
H. Then the operator

AU = (λIVR
H

− λU)(IVR
H

− U)−1 with domain D(AU ) = ran(IVR
H

− U)

is a densely defined right linear symmetric operator which has Cayley transform U.

Proof. It is immediate that AU is a right linear operator. Take φ ∈ D(AU ), then φ = (IVR
H

− U)ψ for some ψ ∈ D(U). Since U
is isometric, we have

⟨AUφ | φ⟩ = ⟨AU (IVR
H

− U)ψ | (IVR
H

− U)ψ⟩

= ⟨(λIVR
H

− λU)ψ | (IVR
H

− U)ψ⟩

= ⟨λIVR
H
ψ | IVR

H
ψ⟩ + ⟨λUψ | Uψ⟩ − ⟨λIVR

H
ψ | Uψ⟩ − ⟨λUψ | IVR

H
ψ⟩.

By (a) in Proposition 3.9, we get

⟨AUφ | φ⟩ = ⟨λIVR
H
ψ | IVR

H
ψ⟩ + ⟨Uλψ | Uψ⟩ − ⟨λIVR

H
ψ | Uψ⟩ − ⟨λUψ | IVR

H
ψ⟩.

Since U is isometric and using (d) in Proposition 3.7, we have

⟨AUφ | φ⟩ = ⟨λψ | ψ⟩ + ⟨ψ | λψ⟩ − ⟨λψ | Uψ⟩ − ⟨Uψ | λψ⟩

= 2Re[⟨λψ | ψ⟩ − ⟨λψ | Uψ⟩].

Thus ⟨AUφ | φ⟩ ∈ R, for all φ ∈ D(AU ). Hence by 3.6, AU is symmetric. Since D(AU ) = ran(IVR
H

− U) is dense in V R
H, AU is

densely defined. Furthermore, for any ψ ∈ D(U), using (4.12), we derive the equalities:

(AU − λIVR
H
)(IVR

H
− U)ψ = (λ − λ)ψ and (AU − λIVR

H
)(IVR

H
− U)ψ = (λ − λ)Uψ.

Using point (a) in Proposition 3.9, these two equalities imply that

U(λ − λ)ψ = (AU − λIVR
H
)(AU − λIVR

H
)−1(λ − λ)ψ. (4.13)

For any ψ ∈ D(A), one can choose ϑ = (λ − λ)−1ψ since (λ − λ) ̸= 0. Since ϑ ∈ D(A), it follows that

U(λ − λ)ϑ = (AU − λIVR
H
)(AU − λIVR

H
)−1(λ − λ)ϑ.

Thereby, using (c) in Proposition 3.7, we get the desired formula

Uψ = (AU − λIVR
H
)(AU − λIVR

H
)−1ψ

and D(U) ⊆ D((AU − λIVR
H
)(AU − λIVR

H
)−1). Since

D((AU − λIVR
H
)(AU − λIVR

H
)−1) ⊆ D((AU − λIVR

H
)−1) = ran(AU − λIVR

H
) = D(U)

we conclude that U = (AU − λIVR
H
)(AU − λIVR

H
)−1. That is, U is the Cayley transform of AU . Hence the result follows. □

In the complex case, it is enough to assume thatU is a linear isometry and that ran(IVR
H
−U) is a dense subspace. But in the

quaternionic case, we need some more conditions on U . Specifically U should be a densely defined right linear symmetric
operator with the property that iψ, jψ, kψ ∈ D(U), for all ψ ∈ D(U) and the operators iU , jU and kU should be anti-
symmetric. The following theorem collects the main facts contained in the above two propositions. In order to state the
theorem, we need to introduce the following sets of right quaternionic linear operators:

X = {A | iφ, jφ, kφ ∈ D(A), ∀φ ∈ D(A) and (τA)† = −τA ∀ τ = i, j, k},

Y = {A | A ∈ X is densely defined and symmetric}

and

Z = {U | U is isometric and ran(IVR
H

− U) = V R
H}.

Theorem 4.10. The Cayley transform C : Y −→ Z defined by

C (A) = UA = (A − λIVR
H
)(A − λIVR

H
)−1,

for all A ∈ X, is a injective mapping. Its inverse is the inverse Cayley transform C −1
: Y ∩ Z −→ Y, defined by

C −1(U) = AU = (λIVR
H

− λU)(IVR
H

− U)−1,

for all U ∈ Y ∩ Z.
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Proof. The proof can be obtained from the combination (a) and (b) in Propositions 4.8 and 4.9. □

Remark 4.11. To show that the classY∩Z is non-empty and contains non-trivial elements, it is sufficient to consider 2 × 2
matrices of the form Aθ =

[
cos θ sin θ
sin θ − cos θ

]
. They trivially belong to the class Y ∩ Z and they allow to construct examples

of matrices of any size still belonging to the same class. In fact it is sufficient to consider matrices of size 2n × 2n of the
form diag(Aθ1 , . . . , Aθn ) or matrices of size 2n + 1 × 2n + 1 of the form diag(±1, Aθ1 , . . . , Aθn ). One can perform arbitrary
permutations of the elements on the diagonal still obtaining matrices in the classY ∩ Z.

Due to the non-commutativity of the quaternions, C cannot be bijective despite the fact that the analogous map in the
complex case is bijective.

We prove two corollaries of this theorem.

Corollary 4.12. Let A ∈ Y, UA be its Cayley transform and let UA ∈ Y ∩ Z. Then A is self-adjoint if and only if UA is unitary.

Proof. From Proposition 3.10, A is self-adjoint if and only if ran(A − λIVR
H
) = ran(A − λIVR

H
) = V R

H, it is equivalent to say UA

is unitary, because of (a) in Proposition 4.8. □

Corollary 4.13. A unitary operator U ∈ Y∩Z is the Cayley transform of a self-adjoint operator if and only if ker(IVR
H
−U) = {0}.

Proof. By Theorem 4.10, there exists AU ∈ Y such that C −1(U) = AU . That is, AU is densely defined. Thus D(AU ) =

ran(IVR
H

− U) = V R
H. From (c) in Proposition 3.4, the conclusion follows. □

5. Partial invariance of Cayley transform

In the previous section we defined the Cayley transform using a left multiplication defined in terms of a fixed basis of
a right quaternionic Hilbert space. However, a natural question arises: whether the defined Cayley transform is invariant
under the basis change and we will show, in this section, that the invariance holds partially.

Let O = {ϑk | k ∈ N} be a Hilbert basis different from the basis in (3.4) for V R
H. For any given q ∈ H ∖ {0} define the

operators Lq and Lq by

Lqφ = q · φ =

∑
k∈N

ϕkq⟨ϕk | φ⟩, (5.1)

and

Lqφ = q ∗ φ =

∑
l∈N

ϑlq⟨ϑl | φ⟩, (5.2)

for allφ ∈ V R
H.Wewould like to remind to the reader that, up to the end of Section 4,whatwe called qφ is nowwritten as q·φ.

We wrote it in this new way for individuating it from the other left-scalar-multiplication q ∗ φ. The following proposition
provides a useful result.

Proposition 5.1. For each q ∈ H, Lq = Lq if and only if ⟨ϕ | ϑ⟩ ∈ R, for every (ϕ, ϑ) ∈ O × O.

Proof. An equivalent form of this statement has been proved in [6], Proposition 3.1. □

Next result concludes this section.

Theorem 5.2. Let A : D(A) ⊆ V R
H −→ V R

H be a densely defined right linear symmetric operator with the property that
iφ, jφ, kφ ∈ D(A), for all φ ∈ D(A) and the operators iA, jA and kA are anti-symmetric. Let UA and VA be the Cayley transforms
of A defined by

UA = (A − λ · IVR
H
)(A − λ · IVR

H
)−1, with D(UA) = ran(A − λ · IVR

H
)

and

VA = (A − λ ∗ IVR
H
)(A − λ ∗ IVR

H
)−1, with D(VA) = ran(A − λ ∗ IVR

H
)

respectively. If ⟨ϕ | ϑ⟩ ∈ R, for every (ϕ, ϑ) ∈ O × O, then UA = VA.

Proof. It is straightforward from Proposition 5.1. □
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