The Knowledge Engineering Review, Vol. 35, €20, 1 of 12. © The Author(s) 2020. Published by
Cambridge University Press.
doi:10.1017/S0269888920000302

A blockchain-based database management system

JEYAKUMAR SAMANTHA THARANI' ©, MUKUNTHAN THARMAKULASINGAMZ, and
VALLIPURAM MUTHUKKUMARASAMY’

1 . . , ,
Department of Computer Science, University of Jaffna, Sri Lanka
e-mail: samantha@univ.jfn.ac.lk

2
Department of Electrical and Electronic Engineering, University of Jaffna, Sri Lanka
e-mail: mukunthan@eng.jfn.ac.lk

3School of Information & Communication Technology, Griffith University Gold Coast Campus
e-mail: v.muthu @ griffith.edu.au

Abstract

The software and hardware applications are clearly on the way of becoming an integral tool of business,
communication and popular culture in many parts of the world. People are interacting with the environ-
ment via the Internet to perform physical activities remotely. These applications are hosted in the public
or private servers under the control of the server admin. The users’ online usage data can be stored in
public or private cloud platforms, used for processing and monitoring users’ online behaviour and emo-
tional factors and shared with third parties to facilitate making their business decisions. When users allow
their data to be collected via software applications and mobile devices, users need to have some level of
trust and control over their data. But, software applications or mobile devices connected to the cloud
server using client—server architecture does not ensure the reliability, security and integrity among their
data. To get over these kinds of limitations, we propose a database management system using blockchain
technology that can be used by any software applications. The blockchain database connected to the
cloud server can be used to increase the trustfulness of the application. Blockchain has the capability to
provide decentralization, immutability and owner-controlled digital assets among software applications.
Since users can save their data in a shared transaction repository with tamper-resistant records, it enables
related parties to access and control users’ data without the need for a central control system.

1 Introduction

Software and hardware applications are clearly of the way on becoming an integral tool of business, com-
munication and popular culture in many parts of the world. People are interacting with the environment
via the Internet to perform physical activities remotely. For example, hardware applications and wearable
computing devices are frequently used in the areas of health, education, reservation, sports, entertain-
ment, management and controlling of resources (abbasi2017addressing). Wearable computing devices
are being utilized to monitor blood pressure, heart rate and predict different diseases by using Computer
Vision and Artificial Intelligence in the healthcare field. Yet, there are multiple challenges in
enabling this kind of technologies related to data integrity, data heterogeneity, knowledge management
and data analysis tools. Data stored in the cloud can be vulnerable to tampering. The adoption of the tech-
nology has also been hampered by the necessity to ensure the ability to stop data temper and corruption
in the data flowing of software applications potentially due to accidents on industrial scales. To solve
these well-known issues, a technology that can be used to trace the transaction of data from the source to
destination is needed. Blockchain technology is a more suitable integration platform for decentralization,

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://doi.org/10.1017/S0269888920000302
https://orcid.org/0000-0002-3187-6131
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

2 J.S. THARANI ET AL.

immutability and owner-controlled asset. Industries are currently using blockchain technology in supply
chain management, which helps to track the objects as they traverse the export/import supply chain while
enforcing shipping and expediting incremental payments (staples2017risks). Our proposed database man-
agement system is used to track the database operations such as CREATE, UPDATE, READ, etc. for
the applications hosted in the cloud platforms. When an application requests a database operation, this
database management system will record in the distributed ledger by using that an application can ensure
their data integrity. The data in the database cannot be altered or modified by an unauthorized person.

2 Related work

According to the previous literature studies, blockchain technologies were proposed to ensure decen-
tralizing privacy among users personal data collected via social media’s mobile applications such as
Facebook, WhatsApp, Viber, Messenger (Zyskind et al., 2015). In their proposed algorithm, they have
included three entities such as mobile phone users, service providers and nodes. The proposed blockchain
allowed two types of transactions, namely, Tccess and Tga,. When a user signed up for the first time, a new
shared identity key was generated and sent along with the associated permissions to the blockchain via
Tyccess transaction. By using that shared key, the collected data were encrypted and sent to the blockchain
via Tya, transaction, which subsequently routed it to an off-blockchain key-value store, while retain-
ing only a pointer to the data on the public ledger (SHA-256 hash of the data). Both the service and the
mobile phone user could query the data using a Ty, transaction with the pointer (key) associated with it.
The blockchain verified that the digital signature belonged to either the mobile phone user or the service.
For the service, it would give permissions to access and check the status of the data. The user could
change the permission granted to the service at any time by issuing a Tyccess transaction with a new set of
permissions, including revoking access to previously stored data. In this way, they had made users aware
of their data and how it was used by the services. In addition to that, this proposed blockchain considered
the users as the owners for their personal data. They can decide which services can access their data by
granting or rejecting the permissions via Tyecess transaction.

In another study, Blockchain-based database aimed at providing a replicated database (Gaetani et al.,
2017). In this proposed method, they devised the blockchain into two layers. The first layer ensured ade-
quate performance, while the second layer ensured strong integrity quarantines. The first layer employed
a lightweight distributed consensus protocol that assumed low latency and high throughput and pro-
vided weak data integrity guarantees due to the lack of Proof of Work(PoW). Thus, second layer was
designed as a PoW-based blockchain that stored evidence of the database operations logged by the first
layer. This was a guarantee for strong data integrity, but with poor performance. The operations were first
logged via appropriate evidence of the first-layer blockchain, then they were executed on the distributed
DB replicas. The first-layer blockchain was related to permission, and it was proposed to have one miner
node on each number of clouds in the future. The miner nodes were relying on the public/private key pair
to sign messages and achieve consensus. One miner would be selected as a leader in each round based on
the time they had taken to achieve consensus. The leader was the in charge for mining new operations,
signing them with its private key and broadcasting them to other miners. Once all miners had signed the
operation, they became a part of the blockchain. After that, all miners added those operations into their
local ledger and applied them to their local replica. The interaction with the second-layer PoW-based
blockchain was released via blockchain anchoring technique. This technique was a timed operation that
permits linking a specific first-layer blockchain with the second-layer blockchain. At a certain interval
of time, a witness transaction contained the hash of the first-layer blockchain up to the current opera-
tion. This hash value was sent to the second-layer blockchain and consequently stored as an immutable
irreversible transaction. Hashes acted as forensic evidence for proving and validating the integrity of the
data stored in the first-layer blockchain. The proposed blockchain had three entities, namely, Data Owner
Application (DOA), Data Consumer Applications (DCAs) and Cloud Storage Service (CSS). DOA and
DCAs had an agreement via smart contract. This contract was used by DCAs to verify the data integrity

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

A blockchain-based database management system 3

of data owned by DOA stored in CSS. In addition to that, DOA and CSS had another contract which
controlled the CSS to shared data only with the signed DCAs.

Bigchain is a database (McConaghy et al., 2016) known as the blockchain database since it has the
database properties as well as some blockchain properties. It uses Tendermint (Kwon, 2014) as a protocol
for all networking and consensus activities. Each node in the Bigchain database has its own MongoDB
database. If local MongoDB is attacked by a malicious hacker in any one of the nodes, other MongoDBs
in other nodes will not be affected. Bigchain database gets decentralized property due to this feature. To
achieve immutability, it does not provide APIs to change or erase stored data and cryptographic signs
all transactions after a transaction is stored. Changing its contents will change the signature, which can
be detected. The only owner of an asset is allowed to transfer that asset, not even a node operator can
transfer an asset. When a node creates an asset, it needs to cryptographically sign using its private key.
When a transaction reached the Tendermint node, it first checks the transaction. If it is a success, then it
will be included in the member broadcast to other peers, and eventually included in a block. There are
several use cases including supply chain, IP rights management, digital twins and 10T, data governance
and immutable audit trails.

ChainSQL (Muzammal et al., 2018) is a blockchain database application platform. It is developed
by integrating blockchain with the traditional database. Chain SQL has three main concepts such as
blockchain networks, a database and a set of users. The database is configured on top of the blockchain
nodes which is synchronized with the blockchain and facilitates quick database operations. The trans-
action received from the user is authenticated by the subset of nodes in the blockchain network.
Authenticated transaction sent to the blockchain network for consensus and is subsequently written into
the corresponding database. If consensus is failed, the database operation is rolled back. In addition to
that, it has a data recovery facility. Since one of the nodes in the blockchain network is configured with the
database to keep transactions in the blockchain or to execute database operations to recreate a new table.
A node on the blockchain network can be either a full-record node which can store all the transactions on
the blockchain network or a partial-record node.

This research aims to take benefits from all these state-of-art works and contributions to derive a well-
defined solution for the software or hardware application user’s shared data which are available in the
cloud platforms. We are mainly focusing on data management and data sharing for software applications
and mobile devices which are interconnected with cloud platforms. In the next section, we will discuss
our proposed system architecture and its functionalities.

3 Proposed system

In this section, we introduce our proposed method for an effective blockchain-based database manage-
ment system. It can store evidence of database operations that cannot be repudiated. Figure 1 graphically
depicts the proposed database management system distributed in the cloud server. This proposed database
management system considers three entities, namely, blockchain-based cloud server, software applica-
tion and an off-chain. Once a software application joins in the block chain-based cloud server, it has
a database and a distributed ledger. Database details of the application such as the number of tables,
name of the table, name of column and so on can be stored and the authorized data access operations
can be mentioned in the smart contract of the application. When an application sends a request to
store/view/update the value of the data in the cloud server, it will be stored in the distributed ledger and
will be checked with the smart contract of the application. If the data access request is a success, it will
be notified to the application and a hash pointer will be sent to the off-chain blockchain in the second
layer.

The use of this database management is not only providing data integrity but also fully distributed
control of data in the databases. As an external client cannot tamper the records without the owner’s
permission and only authorized client has permission to access the data, we can ensure the data integrity
and owner-controlled digital asset. The client can identify the interested parties and the usage of their
data through history. This will help to identify the future markets demands and new features of their
applications.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

4 J.S. THARANI ET AL.

Blockchain Based Database Management System

Sign-In request

Sign-In request

.+~ Send shared key

Send shared key .

Sign-In request

Send shared key

Hash pointer for
the transaction in a
particular duration

Figure 1 Blockchain-based database management system in cloud server

4 Design of the proposed system
4.1 Defining the scenario

The proposed blockchain-based cloud server consists of two layers, namely, on-chain and off-chain.
On-chain is a blockchain-based cloud server. It contains nodes for each application. Each node of the
application has a database replica and a distributed ledger. Nodes are interconnected with each other in

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

A blockchain-based database management system 5

Node in Cloud
Accounts Q
I Public key] | Private key | @.
- loT Application me
P2P Network peli
Peer List ” Peer Discovery I Database Transaction blocks! Q

Off-Chain
Consensus Algorithm Block 1 Block 2
T * Bl‘fd‘ Execute Database header header
Validation operation
Hash pointer ‘¥ Hashof Hash of
1 transaction transaction
ﬁ)istributed Ledger //)<'
Block 1 Block 2 Block 3 Merkle root Merkle root
header header header
Hash of Hash of Hash of
previous block [previous block ' previous block
header header header Smart contract
Merkle root Merkle root Merkle root

Figure 2 Internal structure of the node in the cloud server and software application

a peer-to-peer manner. Hence, all database operations such as INSERT, UPDATE, READ are visible to
each other.

At the beginning, each application needs to register in the cloud server by using Algorithm 1 protocol.
Once they are registered, a shared key (public, private) is generated for them, and the shared key will be
stored in the distributed ledger. The shared key is used by the nodes to identify other nodes during the
transaction.

Once the initial process is done, an application can sent a database operation request as an INSERT
query for storing data in the database or a READ query to retrieve data from the database or an UPDATE
query for the modification. All these operations and their execution status (SUCCESS, FAILED) will be
stored in the distributed ledger with the timestamp and signed with miner’s public key.

At a time, one node in the blockchain can be selected as a miner and that node will only have the
permission to receive the request Algorithm 2 from the application. Once a request is received by the
miner node, it will sign the request with its private key and broadcast to other nodes. After that, all
nodes will check the validity of the request. Once it is authorized, the operation will be recorded in the
distributed ledger with the timestamp and the miner’s public key. If the request is rejected, that request
will be recorded as FAILED in the distributed ledger with the sender’s public key, and the application
which made the request will be notified with the status. A hash pointer will be created for the accepted
and rejected requests and send to the second layer of the blockchain.

The second layer of the proposed blockchain is an off-chain. Off-chain does not necessarily mean ‘not
on the blockchain’, it means that it is not on a publicly accessible service. Based on the response available
in the hash pointer, an application performs the requested action in the appropriate database.

Within the certain interval of time, a hash pointer is created and send to the second layer off-chain.
Time can be configured as either per week or month or year by the owner of the software application.
Hash pointer is stored in the off-chain ledger. By using that, a node can control or monitor the data
accessing or sharing within a certain interval of time.

4.2 Defining the internal structure of the node and the software application

Figure 2 describes the internal structure of the node in the cloud server and the internal structure of
the software application. Each software application owns a node. Node has two main components such
as database and distributed ledger. The distributed ledger holds all history of the database operations

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

6 J.S. THARANI ET AL.

Rsignin

shared Key
R il
values for '
smartContract 1

generate
smart contract

Figure 3 Sequence diagram for Rsign-in request

and its status. Based on the status of the database operation, a node can perform the operations such as
SELECT, CREATE and UPDATE on its database. Smart contracts define which database operations
are allowed in which columns of each table. In addition to that, a node has an account to hold private
and public keys, and nodes link with other nodes in a peer-to-peer (P2P) communication with its own
layer of protocol messages for node communication and peer discovery. It uses a consensus algorithm to
validate the transactions from other pair nodes.

A software application has an off-chain distributed ledger which is a key store for the database opera-
tion with a time stamp. Each database operations has a hash pointer and stored in this off-chain distributed
ledger. In addition to that, there is a smart contract between the node and software application. It is a
digital agreement for the data access control for one node and its pair nodes.

4.3 Defining the operations

Before describing our protocol, we are first defining some notations that will be later used in the paper:
pk;,,p = Private key for the software application
skiapp = Shared key or Public key for the software application
DL = Distributed Ledger
hp = Hash pointer
Tr = Transaction
Ltbls = List of Tables
tbINm = Table Name
cImNm = Column Name
opts = operations
Lclms = List of Columns
clms = columns

1. Rsign—in

Software application sends a Algorithm 1 request to cloud server as shown in Figure 3. In the sign-in,
an application needs to provide the shared key(public key), App Id (auto generated), Database Name,
Number of tables and its clients’ address(public key).

2' Raccess

When a software application performs a Algorithm 2 as shown in the Figure 4, it is needed to provide
receiver’s address, app Id, tables name, column name and the operations to be performed in the given
column. These are sent along with its public key and timestamp.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

A blockchain-based database management system 7

Algorithm 1 Rgn_in

Input: address, appld, databaseName, NoOfTables, clientAddresses
Output: Registered transaction Id

if checkAddress(address) then
Registered as new application;

Store new app in the application list;
else
| notified as “Already registered app”;

1 '
1 | '
o Raccess | '
'
'
checkSmartContract
1
'
notify as SUCCESS or FAILED ! !
(AR A N A pp—— '
< ! !
] []
alt)[notlfy == SUCCESS] . '
1
write in the distributed
ledger as SUCCESS
'
send hash !
: pointer
: perform requested
" database operation
|
[notify == FAILED] ' !
'
write in the distributed
ledger as FAILED
1
notify the application '
s mmm send hash '
' pointer '
1 | .
1 |
: : write in the ledger
1 |
1 |
1 | '
1 | 1
1 | '
1 | 1
1 1 1

Figure 4 Sequence diagram for Raccess request

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

8 J.S. THARANI ET AL.

Algorithm 2 R, s

Input: receiver app address, appld, tableName, columnName, columnOperations
Output: appld, tableName, columnName, columnOperations
if validateTransaction(address, appld, thINm, clImNm, opts) then

| return (appld, tbINm, cImNm, opts)

else
| notified as “Unauthorized data access request”;

Algorithm 3 Validate Request

Input: receiver app address, appld, tableName, columnName, columnOperations
Output: TRUE or FALSE

if checkAddress(address) then
Get the list of tables of the app using appld;

for each table t in tbls do

if £ N ame is equal to tableName then
Get the list of columns of the table using tableName;

for each column c in clms do

if ¢.N ame is equal to columnName then
Get the authorized column’s operations;

for each opt o in opts do
if o equal to columnOperation then Return TRUE; ;
else Return FALSE; ;

3. Check the validity of data access request
The Algorithm 3 can be checked using the smart contract.
4. Update the data operations of the application

The Algorithm 4 is used to update the existing data operations based on the future modification.

4.4 Defining the smart contract

A smart contract is created for software application and cloud server. In that smart contact, it needs to be
defined about the allowed database operations, allowed tables and columns for those operations.

4.5 Defining off-chain implementation

Off-chain is used to store the logs of the database operations with a certain time interval gap. When
a modification is made in the database of the software application, it will be hashed by the miner and
notified to the application by sending the hash pointer. It will be stored in the off-chain ledger. When an
application receives the hash pointer, it can query by using that pointer, view the status of its data and
identify their targeted audience.

In the next section, we will explain how our proposed system overcomes the existing challenges in
database management and data sharing among users and software applications.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

A blockchain-based database management system 9

Algorithm 4 Update Operation

Input: receiver app address, appld, tableName, columnName, oldOperation,
newQOperation
Output: Modified Application Operation;

if checkAddress(address) then
Get the list of tables of the app using appld,

for each table t in tbls do

if N ame is equal to tableName then
Get the list of columns of the table using tableName;

for each column c in clms do
if ¢.Name is equal to columnName then
Get the authorized column’s operations;
for each opt o in opts do

if o equal to oldOperation then
| o < new Operation ;

| Return modified application operation;

0x41505030303031000000000000000000(¢

0x75736572000000000000000000000000¢

["0x14723a30%acff6d2a60dcdf7aa4aff308fdd:

Figure 5 Register the software application

5 Implementation details

A blockchain-based cloud server is implemented in Ethereum platform which is an open-source dis-
tributed public blockchain network (Wood, 2014). Like other blockchains, Ethereum has a native
cryptocurrency called Ether (ETH). ETH is digital money which has many of the same features as the
well-known Bitcoin (Nakamoto, 2008). It is purely digital and can be sent to anyone anywhere in the
world instantly. It allows decentralized apps to be built on it with the help of smart contract functionality.

For simplicity, a smart contract called DbContract is designed and implemented with three major
functions. One function register is used to register software application such as application Id, database
name, number of tables and the clients’ addresses. Figure 5 shows the initial configuration of the software
application in Remix IDE.

Once the application is registered, it is needed to configure its tables and columns details. Other
function setTableInfo is used to configure the property of table for an application, and the other
setColumnInfo function is used to configure the columns details of the table. Figure 6 illustrates the
configuration of the table of the software application. In that, we need to give appld, table name and the
number of columns in that table. Figure 7 illustrates the configuration of the columns of table related to
the software application. In that, we need to give appld, table name, column name and the allowed data
operations can be performed that column. Table 1 shows the Transaction cost and Execution cost for the
operations register, setTableInfo and setColumnInfo.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

10 J.S. THARANIET AL.

Table 1 Resource usage for the operations in smart contract

Operation Transaction cost Execution cost
register 168955 gas 143331 gas
setTableInfo 164558 gas 141878 gas
setColumnInfo 257513 gas 232337 gas
setTableinfo N

0x41505030303031000000000000000000¢

0x757365724e616d650000000000000000C

Figure 6 Configure table properties

setColumninfo
0x41505030303031000000000000000000(¢

0x757365724e616d650000000000000000C

0x757365724e616d650000000000000000C

Figure 7 Configure column properties

6 Analysis and discussion

This proposed blockchain-based database management system contains two layers to ensure the key
features such as secure communication, data integrity, privacy, query processing and data availability.
Every participating node has a database replica and a copy of the distributed ledger. Software applications
can perform INSERT, UPDATE, READ database operations based on the access permissions mentioned
in the smart contract.

6.1 Secure communication

One of the main security challenges for software application or mobile device is to ensure secure com-
munication across the network with cloud platforms and third-party applications. This blockchain-based
database management system ensures the authentication via public-key cryptography encryption and the
smart contract. If an application has an authorized key, it can INSERT, UPDATE, READ data from the
databases. In this way, access can be controlled over data of the application.

6.2 Efficiency

In the real world, most of the mobile devices have less memory capacity since they could not act as a
node in blockchain. Off-chain transactions bring huge value as they are increasing the security and also

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

A blockchain-based database management system 11

not bound by the transactional speed limitations that on-chain transactions have. In a typical on-chain
transaction, each transaction needs to be confirmed by all nodes. Thus, this makes it very slow, whereas an
off-chain transaction does not need to wait for all the nodes to confirm the transaction before it is marked
as complete or successful. As proposed blockchain-based database management system is going to be
deal with the real-time software applications, the performance of the application should be acceptable
by the user. By incorporating the off-chain layer, it is possible to perform users’ request as much as fast
users need. Another important factor of the off-chain system is that it can easily store any type of real
sensitive data. As on-chain data are nonnegotiable in terms of modification, this sort of problem does not
arise with the off-chain data management system.

6.3 Ensure data privacy and integrity

Once data are transmitted across the network, it needs to be stored and processed securely. Threats to
data integrity and privacy are high as tampering with data may maliciously affect crucial business deci-
sions. This threat is very high in cloud environments, where data owners cannot control fundamental
data aspects such as physical storage of data and the control of its accesses. But, this blockchain-based
database management system can ensure data integrity in cloud computing environments. By using this
cloud server, software applications can monitor or track their database status (insert, delete, update). If
the data in a database has tampered, the blockchain-based distributed method can easily identify and
ignore. This blockchain-based database management system targets at providing a replicated database
which integrity is testified via adequate evidence stored on a two-layered (on-chain with off-chain)
blockchain system. Off-chain assures the performance with lightweight consensus process and on-chain
assures integrity with proper consensus mechanism. Other than that, a hash mechanism is used to link
all transactions within a timestamp with the off-chain distributed ledger. Hence, it’s highly prevented to
perform the same operation multiple time in a node. In this way, this system is ensuring data privacy and
integrity.

6.4 Secure web, mobile and cloud applications

Web, mobile and cloud apps and services are used to manage, access and process data. In this cloud
server, app services need to have a smart contract with a particular application before getting permission
to access their data. When they access the data, a track of the record is kept in distributed ledger with the
timestamp. Therefore, it facilitates secured Web, Mobile and Cloud Applications.

6.5 Detect vulnerabilities and incidents

The complexity of the system, in terms of the number of devices connected, and the variety of devices,
apps, services and communication protocols involved can make it difficult to identify the time of an
incident occurred in large-scale IoT systems. By using the records in the distributed ledger, time of those
incidents can be easily found.

6.6 Ensure high availability

Software application developers must consider the availability of user’s data in the web and mobile apps.
By using the hash pointer within a particular timestamp, the user can check which applications or devices
are accessing their data and they can make sure whether the data are outdated or not.

7 Conclusion

The objective of this proposed database management system was to consider the possibility of using
blockchain technology in data access protection IoT applications, mainly for wearable devices with the
protection of personal medical information collected via medical sensors and environmental sensors in
the smart home and smart agriculture applications when they share their data via the cloud.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

12 J.S. THARANIET AL.

We have proposed architecture of the solution to protect, control and monitor the data of the IoT
applications. By using the smart contract, [oT applications can control the database operations among its
database tables. By using the hash pointer existing in the distributed ledger of off-chain, it can monitor
the status of its data within a time interval. It will help the application to identify the useful data via that
and it can find the target clients, enhancing the existing feature and add new features.

References

Gaetani, E., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A. & Sassone, V. 2017. Blockchain-based database to
ensure data integrity in cloud computing environments.

Kwon, J. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall.

McConaghy, T., Marques, R., Miiller, A., De Jonghe, D., McConaghy, T., McMullen, G., Henderson, R., Bellemare,
S. & Granzotto, A. 2016. BigchainDB: A scalable blockchain database. White Paper, BigChainDB.

Muzammal, M., Qu, Q. & Nasrulin, B. 2018. A Blockchain Database Application Platform. arXiv preprint
arXiv:1808.05199.

Nakamoto, S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System, http://bitcoin.org/bitcoin.pdf.

Wood, G. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper
151, 1-32.

Zyskind, G., Nathan, O. et al. 2015. Decentralizing privacy: Using blockchain to protect personal data. In 2015 IEEE
Security and Privacy Workshops, 180-184. IEEE.

Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 25 May 2020 at 12:23:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269888920000302

https://arXiv.org/abs/1808.05199
http://bitcoin.org/bitcoin.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269888920000302
https://www.cambridge.org/core

	Introduction
	Related work
	Proposed system
	Design of the proposed system
	Defining the scenario
	Defining the internal structure of the node and the software application
	Defining the operations
	Defining the smart contract
	Defining off-chain implementation
	Implementation details
	Analysis and discussion
	Secure communication
	Efficiency
	Ensure data privacy and integrity
	Secure web, mobile and cloud applications
	Detect vulnerabilities and incidents
	Ensure high availability
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

