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ABSTRACT
In this paper, we establish results fully addressing two open problems proposed recently by I. Ivanov, see
Nonlinear Analysis 69 (2008) 4012–4024, with respect to the convergence of the accelerated Riccati itera-
tionmethod for solving the continuous coupledalgebraic Riccati equation, orCCARE for short. These results
confirm several desirable features of that method, including the monotonicity and boundedness of the
sequences it produces, its capability of determining whether the CCARE has a solution, the extremal solu-
tions it computes under certain circumstances, and its faster convergence than the regular Riccati iteration
method.
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1. Introduction

In this paper, all matrices are real and square. The size of a
matrix may not be specified if it is clear from the context. For
the sake of brevity, a positive semidefinite matrix X is denoted
by X � 0. The term positive semidefinite, by convention, refers
here only to the symmetric case, namely XT = X. For symmet-
ric matrices X and Y, X � Y means X − Y � 0. Similarly, X �
Y means Y − X � 0. In addition, 〈N〉 stands for {1, 2, . . . ,N}.

The main problems we shall address in this paper concern
the so-called continuous coupled algebraic Riccati equation,
abbreviated as CCARE from now on. Specifically, letAi, Si,Qi ∈
R
n×n, where i ∈ 〈N〉, and suppose that Si � 0 and Qi � 0 for

all i, then the CCARE can be expressed in the form (Guo, 2013;
Ivanov, 2008)

AT
i Xi + XiAi − XiSiXi +

∑
j∈〈N〉\{i}

δi,jXj + Qi = 0, i ∈ 〈N〉,

(1)
where δi,j ≥ 0 for any i �= j and, moreover,

∑
j∈〈N〉\{i} δi,j > 0

for each i. When there is no ambiguity, we shall denote by Xi,
with i ∈ 〈N〉, a solution to the CCARE and call each Xi the ith
component of the solution.

In particular, when N = 1, the CCARE reduces to the classi-
cal continuous algebraic Riccati equation, or CARE for short in
the sequel, which can be written by removing the subscript i as

ATX + XA − XSX + Q = 0, (2)

CONTACT Jianhong Xu jhxu@siu.edu Department of Mathematics, Southern Illinois University Carbondale,Carbondale, Illinois 62901, U.S.A.

where S � 0 andQ � 0. Throughout this paper, we shall always
assume by default that N ≥ 2 in (1). The CARE in (2), how-
ever, plays a critical role in dealing with the main problems
here.

The CCARE in (1) arises originally from an optimal control
problem on Markovian jump linear systems. For background
material, see, for example, Costa, Fragoso, and Todorov (2013)
andMariton (1990). Due to its connection to the solution of the
optimal control problem, the numerical computation of positive
semidefinite solutions to the CCARE has drawn much atten-
tion in the literature, seeAbou-Kandil, Freiling, and Jank (1994),
Arnold and Laub (1984), Costa and do Val (2004), Damm
and Hinrichsen (2001), Gajic and Borno (1995), Guo (2013),
Ivanov (2007), Ivanov (2008), Kleinman (1968), Sandell (1974)
and do Val, Geromel, and Costa (1999) and the references
therein. Among these, the following two numerical methods
are relevant here: one is the Riccati iteration method, whereas
the other is the accelerated (or modified) Riccati iteration
method.

We recall in passing the concepts of stabilizability and
detectability. Let A, S,Q ∈ R

n×n. Then, (A, S) is called stabiliz-
able if there exists matrix K such that A−SK is stable, whereas
(A,Q) is called detectable if (AT ,QT) is stabilizable. As a well-
known result, such conditions guarantee the existence and
uniqueness of a stabilising positive semidefinite solution to the
CARE. This result will be stated formally in the next section.

The Riccati iteration method and its convergence are inves-
tigated in Costa and do Val (2004). This method can be

© 2018 Informa UK Limited, trading as Taylor & Francis Group
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formulated — see also (Ivanov, 2008) — as:

Algorithm 1.1: For each i ∈ 〈N〉, choose the initial X(0)
i � 0

and set ρi ≥ 0 such that (Ai − ρiI, Si) is stabilizable and (Ai −
ρiI,Qi) is detectable. Next, for k = 0, 1, 2, . . . , we iterate accord-
ing to

(Ai − ρiI)TX
(k+1)
i + X(k+1)

i (Ai − ρiI) − X(k+1)
i SiX

(k+1)
i

+
∑

j∈〈N〉\{i}
δi,jX

(k)
j + Qi + 2ρiX

(k)
i = 0, i ∈ 〈N〉. (3)

At each iteration, the above algorithm solves N CARE’s,
either in serial or in parallel if all X(k)

i ’s are available, which may
be implemented easily in practice with Matlab’s care. As men-
tioned in Costa and do Val (2004), however, themain advantage
of Algorithm 1.1 is that the stabilizability and detectability con-
ditions in this algorithm, i.e. in (3), can always be satisfied
by choosing appropriate values of ρi’s, and thus (3) computes
unique sequences of positive semidefinite matrices {X(k)

i }, i ∈
〈N〉, even when the CCARE in (1) has no solution. Moreover,
for each i, {X(k)

i } converges if and only if (1) has a solution, and
it does so in amonotonically increasing fashion toward themin-
imal solution of (1), provided that X(0)

i = 0 for all i; see Costa
and do Val (2004) for more detail. Note that the latter feature
here is especially attractive, since it means that the algorithm
can also determine whether (1) has a solution or not, without
resorting to conditions such as mean-square stabilizability and
mean-square detectability (Guo, 2013).

The accelerated Riccati iteration method appears in Ivanov
(2008, (20)) as an effort to improve upon Algorithm 1.1 via
making use of updated X(k+1)

i ’s in (3) as soon as they become
available. Intuitively, such a modification should speed up the
convergence of Algorithm 1.1. Specifically, this accelerated
algorithm can be summarised as:

Algorithm 1.2: For each i ∈ 〈N〉, choose the initial X(0)
i � 0

and set ρi ≥ 0 such that (Ai − ρiI, Si) is stabilizable and (Ai −
ρiI,Qi) is detectable. Next, for k = 0, 1, 2, . . . , we iterate accord-
ing to

(Ai − ρiI)TX
(k+1)
i + X(k+1)

i (Ai − ρiI) − X(k+1)
i SiX

(k+1)
i

+
i−1∑
j=1

δi,jX
(k+1)
j +

N∑
j=i+1

δi,jX
(k)
j + Qi + 2ρiX

(k)
i = 0,

i = 1, 2, . . . ,N. (4)

Similar to the preceding one, at each iteration, the above
accelerated algorithm solves N CARE’s, but clearly only in a
serial fashion — a potential trade-off between intrinsic paral-
lelism and rate of convergence. Other shared features between
the two algorithms are also expected here, such as the ease of
implementation with available software and the existence and
uniqueness of the sequences {X(k)

i }, i ∈ 〈N〉, out of (4), con-
sisting entirely of positive semidefinite matrices. Besides, when
implemented with Matlab’s care that is based on a gener-
alised eigenproblem formulation (Arnold & Laub, 1984), Algo-
rithms 1.2 and 1.1 share the same operation count for each

iteration. In other words, Algorithm 1.2 will not increase the
computational costs iteration-wise.

Algorithm 1.2, however, poses a number of interesting and
crucial problems. Despite some favourable numerical evidence
in Ivanov (2008), the following questions remain yet to be
explored (Ivanov, 2008, p. 4021):

Question 1:What conditions are needed for (4) to compute
monotone, convergent sequences {X(k)

i }, i ∈ 〈N〉?
Question 2: Do such sequences converge faster in compar-
ison to their counterparts from Algorithm 1.1?

The goals of this paper are to resolve these open problems
that are vital to Algorithm 1.2.

2. Convergence of accelerated Riccati iteration
method

Let us start with several necessary preparatory results on the
solution of the CARE given by (2).

The first result here gives the necessary and sufficient con-
ditions for the existence and uniqueness of a stabilising positive
semidefinite solution to the CARE in terms of stabilizability and
detectability.

Lemma 2.1 (Kučera, 1973, Theorem 5; also Bini, Lannazzo,
& Meini, 2012, Theorem 2.21): The CARE in (2) has a unique
positive semidefinite solution X such that A−SX is stable, namely
X is also stabilising, if and only if (A, S) is stabilizable and (A,Q)

is detectable.

The second result establishes an ordering for the solutions
to (2) under a varying term Q. For convenience of application,
we reformulate it based on its original form in Willems (1971).

Lemma 2.2 (Willems, 1971, Lemma 3, also Costa & do
Val, 2004, Proposition 1): Suppose that S � 0 and Q is symmet-
ric. Let X1 � 0 be a solution of

ATX + XA − XSX + Q � 0

such that A − SX1 is stable and let X2 � 0 be a solution of

ATX + XA − XSX + Q � 0.

Then, X1 � X2.

Finally, we cite below a result concerning detectability. Its
original proof in Costa and do Val (2004) employs a rank argu-
ment, but it can also be shown alternatively using a well-known
characterisation of detectability.

Lemma 2.3 (Costa & doVal, 2004, Proposition 2): Suppose that
Q � 0 and �Q � 0. Then, (A,Q + �Q) is detectable whenever
so is (A,Q).

Proof: By the Popov-Belevitch-Hautus tests, see Williams
and Lawrence (2007, Theorem 8.5), (A,Q) is detectable if and
only if there exists no (right) eigenvector u of A associated with
eigenvalue λ with Reλ ≥ 0 such that Qu= 0.
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Let (A,Q) be detectable. Suppose now to the contrary that
(A,Q + �Q) is not detectable. We denote by (λ, u), with Reλ ≥
0, an eigenpair of A such that (Q + �Q)u = 0. This leads to
u∗(Q + �Q)u = u∗Qu + u∗�Qu = 0. In particular, we have
u∗Qu = 0 and, consequently, Qu= 0, which is a contradiction
to the detectability of (A,Q). �

To facilitate the statement of our results, following Ivanov
(2008), we define that for each i ∈ 〈N〉,

Ri(X1,X2, . . . ,XN) = AT
i Xi + XiAi − XiSiXi

+
∑

j∈〈N〉\{i}
δi,jXj + Qi. (5)

Accordingly, the CCARE in (1) can also be written as

Ri(X1,X2, . . . ,XN) = 0, i ∈ 〈N〉.
We are now in a position to develop a number of results con-
cerning the first question raised in Ivanov (2008), i.e. sufficient
conditions so as to guarantee that the accelerated Riccati itera-
tion method in Algorithm 1.2 computes unique monotonically
increasing, bounded sequences of positive semidefinitematrices
{X(k)

i },i ∈ 〈N〉.

Theorem 2.1: Suppose that X̂i � 0, i ∈ 〈N〉, are such that for
each i,

Ri(X̂1, X̂2, . . . , X̂N) � 0.

In addition, suppose that the initial positive semidefinite X(0)
i ’s in

Algorithm 1.2 are such that

Ri(X
(0)
1 ,X(0)

2 , . . . ,X(0)
N ) � 0

and X(0)
i � X̂i for all i ∈ 〈N〉. Moreover, for each i, let ρi ≥ 0 be

such that (Ai − ρiI, Si) is stabilizable, (Ai − ρiI,Qi) is detectable,
and Ai − ρiI − SiX̂i is stable. Then,

(i) Algorithm 1.2 computes unique sequences of positive
semidefinite matrices {X(k+1)

i }, where k = 0, 1, 2, . . . and
i ∈ 〈N〉, such that for each i, Ai − ρiI − SiX

(k+1)
i , where

k = 0, 1, 2, . . . , are all stable.
(ii) For each i, X(k+1)

i � X(k)
i for all k = 0, 1, 2, . . .; that is, each

{X(k)
i } is monotonically increasing.

(iii) For each i, Ri(X
(k)
1 ,X(k)

2 , . . . ,X(k)
N ) � 0 for all k = 0, 1,

2, . . ..
(iv) For each i, X(k)

i � X̂i for all k = 0, 1, 2, . . .; that is, each
{X(k)

i } is also bounded above.

Proof: We proceed by way of induction on k and, for each k,
induction on i as well.

Case k= 0. In this case, (iii) and (iv) are trivially true by
assumption.

Let i= 1. From (4), we have

(A1 − ρ1I)TX
(1)
1 + X(1)

1 (A1 − ρ1I) − X(1)
1 S1X

(1)
1

+ Q1 + �Q1 = 0, (6)

where �Q1 = ∑N
j=2 δ1,jX

(0)
j + 2ρ1X

(0)
1 � 0. Since (A1 − ρ1I,

S1) is stabilizable and, following Lemma 2.3, (A1 − ρ1I,Q1 +

�Q1) is detectable, we know by Lemma 2.1 that (6) has a
unique solution X(1)

1 � 0 such that A1 − ρ1I − S1X
(1)
1 is sta-

ble, and hence (i) holds at k= 0 and i= 1. In addition, using
R1(X

(0)
1 ,X(0)

2 , . . . ,X(0)
N ) � 0, we have

(A1 − ρ1I)TX
(0)
1 + X(0)

1 (A1 − ρ1I) − X(0)
1 S1X

(0)
1

+ Q1 + �Q1 � 0, (7)

where �Q1 is given as below (6). It follows from (6), (7), the
stability ofA1 − ρ1I − S1X

(1)
1 , and Lemma 2.2 thatX(1)

1 � X(0)
1 ,

i.e. (ii) holds as well at k= 0 and i= 1.
Suppose next that for some 2 ≤ r ≤ N, (i) and (ii) are justi-

fied at k= 0 for all i = 1, 2, . . . , r − 1. On letting i= r in (4), we
obtain

(Ar − ρrI)TX(1)
r + X(1)

r (Ar − ρrI) − X(1)
r SrX(1)

r

+ Qr + �Qr = 0, (8)

where �Qr = ∑r−1
j=1 δr,jX

(1)
j + ∑N

j=r+1 δr,jX
(0)
j + 2ρrX

(0)
r � 0.

Since (Ar − ρrI, Sr) is stabilizable while, from Lemma 2.3,
(Ar − ρrI,Qr + �Qr) is detectable, (8) has a unique solution
X(1)
r � 0 such that Ar − ρrI − SrX

(1)
r is stable according to

Lemma 2.1, and hence (i) holds at k= 0. Finally, observe that
Rr(X

(0)
1 ,X(0)

2 , . . . ,X(0)
N ) � 0 and X(1)

i � X(0)
i , i = 1, 2, . . . , r −

1, yield

(Ar − ρrI)TX(0)
r + X(0)

r (Ar − ρrI) − X(0)
r SrX(0)

r

+ Qr + �Qr � 0, (9)

where �Qr is given under (8). Due to (8), (9), the stability of
Ar − ρrI − SrX

(1)
r , and Lemma 2.2, we see that X(1)

r � X(0)
r , i.e.

(ii) holds too at k= 0.
This concludes the proof of (i) through (iv) for the case k= 0.
Case k> 0. Suppose now that (i) through (iv) are true for

some k ≥ 0. We show here that they remain true at k+1.
First, by (4), and with (ii) and (iii) being true at k, it is clear

that

Ri(X
(k+1)
1 ,X(k+1)

2 , . . . ,X(k+1)
N ) � 0, i ∈ 〈N〉,

i.e. (iii) holds at k+1.
Next, for (i) and (ii), we start with i= 1. Using (4), we have

(A1 − ρ1I)TX
(k+2)
1 + X(k+2)

1 (A1 − ρ1I) − X(k+2)
1 S1X

(k+2)
1

+ Q1 + �Q̃1 = 0, (10)

where �Q̃1 = ∑N
j=2 δ1,jX

(k+1)
j + 2ρ1X

(k+1)
1 � 0. Since (A1 −

ρ1I, S1) is stabilizable and, via Lemma 2.3, (A1 − ρ1I,Q1 +
�Q̃1) is detectable, in view of Lemma 2.1, (10) has a unique
solutionX(k+2)

1 � 0 withA1 − ρ1I − S1X
(k+2)
1 being stable and,

consequently, (i) is true at k+1 and i= 1. In addition, we find
fromR1(X

(k+1)
1 ,X(k+1)

2 , . . . ,X(k+1)
N ) � 0 that

(A1 − ρ1I)TX
(k+1)
1 + X(k+1)

1 (A1 − ρ1I) − X(k+1)
1 S1X

(k+1)
1

+ Q1 + �Q̃1 � 0, (11)

where �Q̃1 is given following (10). Because of the stability
of A1 − ρ1I − S1X

(k+2)
1 and Lemma 2.2, (10), and (11) imply

X(k+2)
1 � X(k+1)

1 , showing that (ii) also holds at k+1 and i= 1.
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Suppose now that for some 2 ≤ r ≤ N, both (i) and (ii) hold
true for i = 1, 2, . . . , r − 1 at k+1. According to (4), we have

(Ar − ρrI)TX(k+2)
r + X(k+2)

r (Ar − ρrI) − X(k+2)
r SrX(k+2)

r

+ Qr + �Q̃r = 0, (12)

where �Q̃r = ∑r−1
j=1 δr,jX

(k+2)
j +∑N

j=r+1 δr,jX
(k+1)
j +2ρrX

(k+1)
r

� 0. Observe that, from Lemma 2.3, (Ar − ρrI,Qr + �Q̃r)
is detectable. Besides, (Ar − ρrI, Sr) is stabilizable. Hence,
by Lemma 2.1, (12) has a unique solution X(k+2)

r � 0 such
that Ar − ρrI − SrX

(k+2)
r is stable, implying that (i) is true

at k+1. Finally, combining Rr(X
(k+1)
1 ,X(k+1)

2 , . . . ,X(k+1)
N ) � 0

and X(k+2)
i � X(k+1)

i , i = 1, 2, . . . , r − 1, we arrive at

(Ar − ρrI)TX(k+1)
r + X(k+1)

r (Ar − ρrI) − X(k+1)
r SrX(k+1)

r

+ Qr + �Q̃r � 0, (13)

where �Q̃r is given under (12). By Lemma 2.2, (12), (13), and
the stability of Ar − ρrI − SrX

(k+2)
r yield X(k+2)

r � X(k+1)
r , i.e.

(ii) holds at k+1.
It remains to show that (iv) is true at k+1, i.e. X(k+1)

i � X̂i,
i ∈ 〈N〉. Again, we start with i= 1. On one hand, because of
R1(X̂1, X̂2, . . . , X̂N) � 0, we have

(A1 − ρ1I)TX̂1 + X̂1(A1 − ρ1I) − X̂1S1X̂1 + Q1 + �Q̄1 � 0,
(14)

where �Q̄1 = ∑N
j=2 δ1,jX̂j + 2ρ1X̂1 � 0. On the other hand,

seeing (4) along with X(k)
i � X̂i, i ∈ 〈N〉, we obtain

(A1 − ρ1I)TX
(k+1)
1 + X(k+1)

1 (A1 − ρ1I) − X(k+1)
1 S1X

(k+1)
1

+ Q1 + �Q̄1 � 0, (15)

where�Q̄1 is given as below (14). SinceA1 − ρ1I − S1X̂1 is sta-
ble, accordingly to Lemma 2.2, we get from (14) and (15) that
X(k+1)
1 � X̂1.
Suppose next that for some 2 ≤ r ≤ N, X(k+1)

i � X̂i, i =
1, 2, . . . , r − 1. ByRr(X̂1, X̂2, . . . , X̂N) � 0, we get

(Ar − ρrI)TX̂r + X̂r(Ar − ρrI) − X̂rSrX̂r + Qr + �Q̄r � 0,
(16)

where�Q̄r = ∑r−1
j=1 δr,jX̂j +

∑N
j=r+1 δr,jX̂j + 2ρrX̂r � 0. In the

meantime, we use (4) together with X(k+1)
i � X̂i, where i =

1, 2, . . . , r − 1, and X(k)
i � X̂i, where i = r + 1, r + 2, . . . ,N, to

derive

(Ar − ρrI)TX(k+1)
r + X(k+1)

r (Ar − ρrI) − X(k+1)
r SrX(k+1)

r

+ Qr + �Q̄r � 0, (17)

where �Q̄r is given next to (16). Finally, the stability of Ar −
ρrI − SrX̂r , (16), (17), and Lemma 2.2 lead toX(k+1)

r � X̂r . This
shows that (iv) holds too at k+1.

The proof is now complete in its entirety. �

An immediate consequence of Theorem 2.1 goes as follows.

Corollary 2.1: Under the same conditions as Theorem 2.1,
Algorithm 1.2 computes unique sequences of positive semidefinite
matrices {X(k)

i },with i ∈ 〈N〉, that converge to a positive semidefi-
nite solutionXi, i ∈ 〈N〉, of the CCARE in (1), i.e. limk→∞ X(k)

i =
Xi for each i.

Proof: For each i, the convergence of {X(k)
i } is obvious — see,

for example, Ivanov, Hasanov, and Minchev (2001) and Xu
and Xiao (2013, Corollary 4.1) — and it does so toward some
positive semidefinite Xi. Next, by pushing k → ∞ in (4), we see
that Xi, i ∈ 〈N〉, is indeed a solution to (1). �

Corollary 2.1 shows that, similar to the pure Riccati itera-
tion method in Algorithm 1.1, the accelerated version here in
Algorithm 1.2 can also determine whether the CCARE has a
solution or not. To be specific, Algorithm 1.2 yields a positive
semidefinite solution to the CCARE whenever it converges.

Furthermore, if X̂i’s in Theorem 2.1 happen to be a positive
semidefinite solution to the CCARE in (1), then Algorithm 1.2
actually finds the minimal positive semidefinite solution to (1)
as the next result demonstrates.

Corollary 2.2: Let Xi � 0, i ∈ 〈N〉, be a solution to (1). Suppose
that the initial positive semidefinite X(0)

i ’s in Algorithm 1.2 are
such that

Ri(X
(0)
1 ,X(0)

2 , . . . ,X(0)
N ) � 0

and X(0)
i � Xi for all i ∈ 〈N〉. Moreover, for each i, let ρi ≥ 0 be

such that (Ai − ρiI, Si) is stabilizable, (Ai − ρiI,Qi) is detectable,
and Ai − ρiI − SiXi is stable. Then, Algorithm 1.2 produces
unique sequences of positive semidefinitematrices {X(k)

i }, i ∈ 〈N〉,
such that for each i, {X(k)

i } is monotonically increasing, bounded
above by Xi, and converges to X−

i , the ith component of the
minimal positive semidefinite solution to the CCARE in(1).

Proof: It is clear that Corollary 2.2 assumes the same condi-
tions as Theorem 2.1, except for X̂i’s being replaced with Xi’s.
By Corollary 2.1, we know that Algorithm 1.2 computes a posi-
tive semidefinite solution X−

i , i ∈ 〈N〉, to (1). Besides, note that
due to Theorem 2.1, X−

i � Xi for all i whenever Xi, i ∈ 〈N〉,
is a solution to (1), thus X−

i , i ∈ 〈N〉, is the minimal positive
semidefinite solution to (1). �

Clearly, Corollaries 2.1 and 2.2 also verify that Algorithm 1.2
converges if and only if (1) has a positive semidefinite solution,
provided that the initial X(0)

i ’s are chosen as in Corollary 2.2.
We point out that, in particular, those conditions on X(0)

i ’s are
trivially satisfied when X(0)

i = 0, i ∈ 〈N〉. In other words, this
desirable feature of the Riccati iteration method for allowing
a full determination of the existence of a positive semidefinite
solution — see (Costa & do Val, 2004) — carries over to the
accelerated Riccati iteration method here.

In light of Theorem 2.1 and Corollaries 2.1 and 2.2, we can
formulate the following three parallel results, whose proofs are
very similar and, therefore, are omitted.
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Theorem 2.2: Suppose that X̂i � 0, i ∈ 〈N〉, are such that for
each i,

Ri(X̂1, X̂2, . . . , X̂N) � 0.

In addition, suppose that the initial positive semidefinite X(0)
i ’s in

Algorithm 1.2 are such that

Ri(X
(0)
1 ,X(0)

2 , . . . ,X(0)
N ) � 0

and X(0)
i � X̂i for all i ∈ 〈N〉. Moreover, for each i, let ρi ≥ 0 be

such that (Ai − ρiI, Si) is stabilizable, (Ai − ρiI,Qi) is detectable,
and Ai − ρiI − SiX

(0)
i is stable. Then,

(i) Algorithm 1.2 computes unique sequences of positive
semidefinite matrices {X(k+1)

i }, where k = 0, 1, 2, . . . and
i ∈ 〈N〉, such that for each i, Ai − ρiI − SiX

(k+1)
i , where

k = 0, 1, 2, . . . , are all stable.
(ii) For each i, X(k+1)

i � X(k)
i for all k = 0, 1, 2, . . .; that is, each

{X(k)
i } is monotonically decreasing.

(iii) For each i, Ri(X
(k)
1 ,X(k)

2 , . . . ,X(k)
N ) � 0 for all k = 0, 1,

2, . . ..
(iv) For each i, X(k)

i � X̂i for all k = 0, 1, 2, . . .; that is, each
{X(k)

i } is also bounded below.

Corollary 2.3: Under the same conditions as Theorem 2.2,
Algorithm 1.2 computes unique sequences of positive semidefinite
matrices {X(k)

i },with i ∈ 〈N〉, that converge to a positive semidefi-
nite solutionXi, i ∈ 〈N〉, of the CCARE in (1), i.e. limk→∞ X(k)

i =
Xi for each i.

Corollary 2.4: Let Xi � 0, i ∈ 〈N〉, be a solution to (1). Suppose
that the initial positive semidefinite X(0)

i ’s in Algorithm 1.2 are
such that

Ri(X
(0)
1 ,X(0)

2 , . . . ,X(0)
N ) � 0

and X(0)
i � Xi for all i ∈ 〈N〉. Moreover, for each i, let ρi ≥ 0 be

such that (Ai − ρiI, Si) is stabilizable, (Ai − ρiI,Qi) is detectable,
and Ai − ρiI − SiX

(0)
i is stable. Then, Algorithm 1.2 produces

unique sequences of positive semidefinitematrices {X(k)
i }, i ∈ 〈N〉,

such that for each i, {X(k)
i } is monotonically decreasing, bounded

below by Xi, and converges to X+
i , the ith component of the

maximal positive semidefinite solution to the CCARE in(1).

Corollaries 2.1 through 2.4, coupled with Theorems 2.1
and 2.2, serve as a rather complete answer to the first open prob-
lem in Ivanov (2008). Especially, these corollaries spell out not
only the conditions for convergence in Algorithm 1.2 but also
the particular extremal types of solution this algorithm con-
verges to under certain circumstances. Moreover, these results
can be regarded as new characterisations for the existence of
extremal solutions to the CCARE, extending Ran and Vreug-
denhil (1988, Theorem 2.1) which concerns the maximal solu-
tion to the CARE.

It is straightforward to see that, in fact, Algorithm 1.1 shares
all of the preceding results onAlgorithm1.2. The proofs are very
similar except that the inductive steps on i are no longer needed.

For the sake of concision, we only state such results without
proof in forms parallel to Theorems 2.1 and 2.2. In addition, for
clarity, we denote the sequences from Algorithm 1.1 by {Y(k)

i }’s
here.

Theorem 2.3: Suppose that X̂i � 0, i ∈ 〈N〉, are such that for
each i,

Ri(X̂1, X̂2, . . . , X̂N) � 0.

In addition, suppose that the initial positive semidefinite Y(0)
i ’s in

Algorithm 1.1 are such that

Ri(Y
(0)
1 ,Y(0)

2 , . . . ,Y(0)
N ) � 0

and Y(0)
i � X̂i for all i ∈ 〈N〉. Moreover, for each i, let ρi ≥ 0 be

such that (Ai − ρiI, Si) is stabilizable, (Ai − ρiI,Qi) is detectable,
and Ai − ρiI − SiX̂i is stable. Then,

(i) Algorithm 1.1 computes unique sequences of positive
semidefinite matrices {Y(k+1)

i }, where k = 0, 1, 2, . . . and
i ∈ 〈N〉, such that for each i, Ai − ρiI − SiY

(k+1)
i , where

k = 0, 1, 2, . . . , are all stable.
(ii) For each i, Y(k+1)

i � Y(k)
i for all k = 0, 1, 2, . . .; that is, each

{Y(k)
i } is monotonically increasing.

(iii) For each i, Ri(Y
(k)
1 ,Y(k)

2 , . . . ,Y(k)
N ) � 0 for all k = 0, 1,

2, . . ..
(iv) For each i, Y(k)

i � X̂i for all k = 0, 1, 2, . . .; that is, each
{Y(k)

i } is also bounded above.

Theorem 2.4: Suppose that X̂i � 0, i ∈ 〈N〉, are such that for
each i,

Ri(X̂1, X̂2, . . . , X̂N) � 0.

In addition, suppose that the initial positive semidefinite Y(0)
i ’s in

Algorithm 1.1 are such that

Ri(Y
(0)
1 ,Y(0)

2 , . . . ,Y(0)
N ) � 0

and Y(0)
i � X̂i for all i ∈ 〈N〉. Moreover, for each i, let ρi ≥ 0 be

such that (Ai − ρiI, Si) is stabilizable, (Ai − ρiI,Qi) is detectable,
and Ai − ρiI − SiY

(0)
i is stable. Then,

(i) Algorithm 1.1 computes unique sequences of positive
semidefinite matrices {Y(k+1)

i }, where k = 0, 1, 2, . . . and
i ∈ 〈N〉, such that for each i, Ai − ρiI − SiY

(k+1)
i , where

k = 0, 1, 2, . . . , are all stable.
(ii) For each i, Y(k+1)

i � Y(k)
i for all k = 0, 1, 2, . . .; that is, each

{Y(k)
i } is monotonically decreasing.

(iii) For each i, Ri(Y
(k)
1 ,Y(k)

2 , . . . ,Y(k)
N ) � 0 for all k = 0, 1,

2, . . ..
(iv) For each i, Y(k)

i � X̂i for all k = 0, 1, 2, . . .; that is, each
{Y(k)

i } is also bounded below.

Compared with the results in Costa and do Val (2004),
Theorems 2.3 and 2.4 on Algorithm 1.1 are broader because,
firstly, they allow nonzero initial Y(0)

i ’s and, secondly, they
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provide respective sufficient conditions for the resulting con-
vergent sequences {Y(k)

i }’s to be either monotonically increas-
ing or monotonically decreasing. Consequently, conclusions on
extremal solutions Algorithm 1.1 can compute follow easily
from these theorems — in a way similar to Corollaries 2.2
and 2.4.

It should be pointed out here that being able to determine
the extremal solutions to the CCARE is indeed a nice feature
of Algorithms 1.1 and 1.2 with practical implications, since it is
known (Rami & Ghaoui, 1996; do Val & Costa, 2005) that such
solutions are useful in solving optimal control problems.

We comment that in Theorem 2.1, Corollary 2.2, and
Theorem 2.3, as in Costa and do Val (2004) and Ivanov (2008),
an easy choice of the initial X(0)

i ’s and Y(0)
i ’s is to set X(0)

i =
Y(0)
i = 0 for any i ∈ 〈N〉. With this choice, all the conditions

on X(0)
i ’s and Y(0)

i ’s in those results are trivially satisfied. On
the other hand, when applying Theorem 2.2, Corollary 2.4, and
Theorem 2.4, we may choose the initial X(0)

i ’s and Y(0)
i ’s to be

some existing upper solution bounds for theCCARE. For results
relevant to such bounds, see, for example, Czornik and Swier-
niak (2001), Davies, Shi, and Wiltshire (2008), Xu (2013) and
Xu and Rajasingam (2016) and the references therein.

One of the advantages shared by Algorithms 1.1 and 1.2
is that the stabilizability and detectability requirements can
always be met by appropriate values of ρi’s. In Theorem 2.1,
Corollary 2.2, and Theorem 2.3, however, the choice of ρi’s is
complicated by the stability requirement on Ai − ρiI − SiXi’s
since, in practice, the solution Xi’s is not available a priori.
Although this issue might be alleviated by resorting to suffi-
ciently large ρi values, we shall demonstrate later that, similar
to Algorithm 1.1, unnecessarily large ρi values are usually not
advisable for Algorithm 1.2.

Next, we move on to examining the other open problem in
Ivanov (2008) regarding a comparison of the rate of convergence
of the accelerated Riccati iteration method versus that of the
Riccati iteration method. In this regard, we prove the following:

Theorem 2.5: Under the same assumptions as in Theorems 2.1
and 2.3 with X(0)

i = Y(0)
i for all i ∈ 〈N〉, on letting {X(k)

i },
i ∈ 〈N〉, be the sequences computed with Algorithm 1.2 and
{Y(k)

i }, i ∈ 〈N〉, be the corresponding sequences computed with
Algorithm 1.1, we have that for each i, X(k)

i � Y(k)
i , where k =

0, 1, 2, . . ..

Proof: Again, we use induction on k and, given k, induction on
i. The case k= 0 is trivial here.

Suppose now that at some k ≥ 0,

X(k)
i � Y(k)

i , i ∈ 〈N〉. (18)

Let us show that X(k+1)
i � Y(k+1)

i , i ∈ 〈N〉.
From (4) and (18), we obtain

(A1 − ρ1I)TX
(k+1)
1 + X(k+1)

1 (A1 − ρ1I) − X(k+1)
1 S1X

(k+1)
1

+
N∑
j=2

δ1,jY
(k)
j + Q1 + 2ρ1Y

(k)
1 � 0. (19)

In the meantime, we see by setting i= 1 in (3) that

(A1 − ρ1I)TY
(k+1)
1 + Y(k+1)

1 (A1 − ρ1I) − Y(k+1)
1 S1Y

(k+1)
1

+
N∑
j=2

δ1,jY
(k)
j + Q1 + 2ρ1Y

(k)
1 = 0. (20)

Using Lemma 2.2 and noting the stability of A1 − ρ1I −
S1X

(k+1)
1 from part (i) of Theorem 2.1, (19) and (20) lead to

X(k+1)
1 � Y(k+1)

1 .
Next, suppose that for some 2 ≤ r ≤ N,

X(k+1)
i � Y(k+1)

i , i = 1, 2, . . . , r − 1. (21)

It follows from (4), (18), and (21) that

(Ar − ρrI)TX(k+1)
r + X(k+1)

r (Ar − ρrI) − X(k+1)
r SrX(k+1)

r

+
r−1∑
j=1

δr,jY
(k+1)
j +

N∑
j=r+1

δr,jY
(k)
j + Qr + 2ρrY(k)

r � 0. (22)

Moreover, we see from (3) and from the monotonicity of {Y(k)
i }

established in Theorem 2.3 that

(Ar − ρrI)TY(k+1)
r + Y(k+1)

r (Ar − ρrI) − Y(k+1)
r SrY(k+1)

r

+
r−1∑
j=1

δr,jY
(k+1)
j +

N∑
j=r+1

δr,jY
(k)
j + Qr + 2ρrY(k)

r � 0. (23)

Using Lemma 2.2 again and noting the stability of Ar − ρrI −
SrX

(k+1)
r from part (i) of Theorem 2.1, (22) and (23) yield

X(k+1)
r � Y(k+1)

r , which implies that X(k+1)
i � Y(k+1)

i , i ∈ 〈N〉.
This finishes the proof. �

Since with the assumptions of Theorems 2.1 and 2.3, both
Algorithms 1.1 and 1.2 compute unique increasing sequences
of positive semidefinite matrices, Theorem 2.5 indicates that
in this case, Algorithm 1.2 tends to converge faster than
Algorithm 1.1.

In the same spirit as Theorem 2.5, we can state below a
parallel conclusion, whose proof is obvious and thus is omitted.

Theorem 2.6: Under the same assumptions as in Theorems 2.2
and 2.4 with X(0)

i = Y(0)
i for all i ∈ 〈N〉, on letting {X(k)

i },
i ∈ 〈N〉, be the sequences computed with Algorithm 1.2 and
{Y(k)

i }, i ∈ 〈N〉, be the corresponding sequences computed with
Algorithm 1.1, we have that for each i, X(k)

i � Y(k)
i , where k =

0, 1, 2, . . ..

The above Theorems 2.5 and 2.6, together, provide an answer
to the second open problem in Ivanov (2008).

Returning to the issue regarding the choice of ρi’s, similar to
Algorithm 1.1 — see (Costa & do Val, 2004, Remark 2), we now
illustrate that these parameters should be picked in such a way
that they are as small as possible. Numerical examples in this
regard can be found in Ivanov (2008).



1806 P. RAJASINGAM AND J. XU

For the ease of statement, we first modify (4) to that for k =
0, 1, 2, . . .,

[Ai − (ρi + �ρi)I]TY
(k+1)
i + Y(k+1)

i [Ai − (ρi + �ρi)I]

− Y(k+1)
i SiY

(k+1)
i +

i−1∑
j=1

δi,jY
(k+1)
j +

N∑
j=i+1

δi,jY
(k)
j + Qi

+ 2(ρi + �ρi)Y
(k)
i = 0, (24)

where i ∈ 〈N〉 and �ρi ≥ 0 for all i; namely we consider a set-
ting in which each ρi in (4) is augmented by�ρi. Note that, here
and in the sequel, we denote the sequences generated by (24)
as {Y(k)

i } so as to differentiate them from {X(k)
i } generated

by (4). Clearly, the stabilizability and detectability conditions in
Theorem 2.1, when it holds, still apply to (24).

Theorem 2.7: Under the same assumptions as Theorem 2.1with
X(0)
i = Y(0)

i for all i ∈ 〈N〉, let {X(k)
i }, i ∈ 〈N〉, be the sequences

computed from (4) and let {Y(k)
i }, i ∈ 〈N〉, be the corresponding

sequences computed from(24), then we have that X(1)
i � Y(1)

i , i ∈
〈N〉.

Proof: Observe first that (24) satisfies all the conditions stated
in Theorem 2.1. Hence,{Y(k)

i }’s are uniquely determined by (24)
and have all the properties in Theorem 2.1.

Let us prove the conclusion by induction on i. At i= 1, we
obtain from X(0)

1 = Y(0)
1 � Y(1)

1 and (24) that

(A1 − ρ1I)TY
(1)
1 + Y(1)

1 (A1 − ρ1I) − Y(1)
1 S1Y

(1)
1

+
N∑
j=2

δ1,jX
(0)
j + Q1 + 2ρ1X

(0)
1 = 2�ρ1(Y

(1)
1 − Y(0)

1 ) � 0.

(25)

Comparing (25) and (4) with i= 1, and noting the stability of
A1 − ρ1I − S1X

(1)
1 , we see X(1)

1 � Y(1)
1 by Lemma 2.2.

Next, suppose that there exists some 2 ≤ r ≤ N such that
X(1)
i � Y(1)

i , i = 1, 2, . . . , r − 1. This, together with X(0)
i =

Y(0)
i � Y(1)

i for all i and (24), yield

(Ar − ρrI)TY(1)
r + Y(1)

r (Ar − ρrI) − Y(1)
r SrY(1)

r +
r−1∑
i=1

δr,jX
(1)
j

+
N∑

j=r+1
δr,jX

(0)
j + Qr + 2ρrX(0)

r � 2�ρr(Y(1)
r − Y(0)

r ) � 0.

(26)

Comparing (26) to (4) with i= r, and in presence of the stability
ofAr − ρrI − SrX

(1)
r , we conclude using Lemma 2.2 thatX(1)

r �
Y(1)
r .
Thus, X(1)

i � Y(1)
i for all i ∈ 〈N〉. �

In Theorem 2.7 above, for uniform satisfaction of the con-
ditions in Theorem 2.1 on both (4) and (24), we follow Costa
and do Val (2004, Remark 2) to perform only a ‘single step’
analysis. This analysis, however, extends essentially to the

scenarioX(k+1)
i � Y(k+1)

i , i ∈ 〈N〉, whenever X(k)
i = Y(k)

i for all
i. Accordingly, this result justifies that, in general, the larger ρi’s
are, the slower the convergence (4), i.e. Algorithm 1.2, tends to
exhibit.

Finally, in the same vein as Theorem 2.7, we formulate
here without proof its counterpart assuming the conditions in
Theorem 2.2.

Theorem 2.8: Under the same assumptions as Theorem 2.2with
X(0)
i = Y(0)

i for all i ∈ 〈N〉, let {X(k)
i }, i ∈ 〈N〉, be the sequences

computed from (4) and let {Y(k)
i }, i ∈ 〈N〉, be the corresponding

sequences computed from(24), then we have that X(1)
i � Y(1)

i , i ∈
〈N〉.

3. Numerical results

To illustrate our main conclusions in the preceding section,
we present here relevant numerical results on one example. In
accordance with the primary goals of this work, our numerical
experiment has been carried out only with the Riccati iteration
method, i.e. Algorithm 1.1, and the accelerated Riccati iteration
method, i.e. Algorithm 1.2. For numerical results comparing
these methods with other existing methods, we refer the reader
to Ivanov (2008). Moreover, in view of our results, the example
we provide here features distinct minimal andmaximal positive
semidefinite solutions.

Example 3.1: Let n=N = 2. Let A1 = [ 1 −2
0 −1

]
, A2 = [ 1 −1

0 −3
]
,

S1 = B1BT1 , where B1 = [ 5−5
]
, S2 = B2BT2 , where B2 = [ 6

3
]
,

δ1,2 = 2, δ2,1 = 3, Q1 = [ 0 0
0 2

]
, and Q2 = [ 0 0

0 3/2
]
. Then, the

CCARE as in (1) has the minimal positive semidefinite solution

X−
1 =

[
0.00000000 0.00000000
0.00000000 0.28204532

]
,

X−
2 =

[
0.00000000 0.00000000
0.00000000 0.27641488

]

and the maximal positive semidefinite solution

X+
1 =

[
0.50718185 0.24899225
0.24899225 0.45594482

]
,

X+
2 =

[
0.32609148 −0.16073063

−0.16073063 0.48929635

]
.

In our numerical experiment, the stopping criterion is set as

max
i∈〈2〉

‖X(k)
i − X(k−1)

i ‖F < tol = 10−8,

where ‖ · ‖F stands for the Frobenius norm. Upon the termi-
nation of either algorithm at the mth iteration, the residual is
calculated by

max
i∈〈2〉

‖Ri(X
(m)
1 ,X(m)

2 )‖F ,

where Ri is given in (5). In addition, for each i, we denote the
largest eigenvalue of X(k)

i byλ1(X
(k)
i ), the smallest eigenvalue

of X(k)
i by λ2(X

(k)
i ), and the spectrum of X(k)

i by σ(X(k)
i ), i.e.
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Table 1. This table shows, asρi values vary, the numbers of iterations and residuals
from Algorithms 1.1 and 1.2 when computing X−

i .

ρ1 = ρ2 Algorithm 1.1 Algorithm 1.2

# of iterations residual # of iterations residual

1.5 17 3.92 × 10−8 14 4.25 × 10−8

1.1 16 1.91 × 10−8 13 1.43 × 10−8

1.01 16 1.20 × 10−8 12 3.48 × 10−8

σ(X(k)
i ) = {λ1(X(k)

i ), λ2(X
(k)
i )}. These quantities are used in the

illustrations.
To compute X−

i , we choose X
(0)
1 = X(0)

2 = 0. It is not diffi-
cult to verify that the conditions of Corollary 2.2 are all satisfied
for any ρi > 1, i= 1,2. For ρ1 = ρ2 = 1.01, Algorithm 1.1 con-
verges to X−

i in 16 iterations, while Algorithm 1.2 does so in 12
iterations, as shown in the left panel in Figure 1. In the mean-
time, the right panel of Figure 1 displays the spectra ofX(k)

i com-
puted from Algorithm 1.2, which shows that for each i, {X(k)

i } is
monotonically increasing as confirmed by Corollary 2.2.

With varyingρi values, we summarise in Table 1 the resulting
numbers of iterations and residuals for computing X−

i by Algo-
rithms 1.1 and 1.2. It points to that, as suggested byTheorem2.5,
Algorithm 1.2 converges faster thanAlgorithm 1.1. It also shows
the speed-up in Algorithm 1.2 along with decreasing values of
ρi, see Theorem 2.7.

Next, to computeX+
i , we chooseX

(0)
1 = X(0)

2 = 3I. It is quite
straightforward to verify that the conditions in Corollary 2.4
are all satisfied for all ρi > 1, i= 1,2. Given ρ1 = ρ2 =
1.01, Algorithm 1.1 converges to X+

i in 35 iterations, while
Algorithm 1.2 does so in 30 iterations, as illustrated by the left
panel in Figure 2. In the right panel of Figure 2, the spectra of
X(k)
i obtained from Algorithm 1.2 are plotted, showing that for

each i, {X(k)
i } is monotonically decreasing.

With the same decreasing values of ρi as in Table 1, we
provide in Table 2 evidence as indicated by Theorem 2.8 of a
speed-up in Algorithm 1.2 for computingX+

i . As a comparison,
the corresponding numerical results from Algorithm 1.1 are

Table 2. This table shows, asρi values vary, the numbers of iterations and residuals
from Algorithms 1.1 and 1.2 in the case of computing X+

i .

ρ1 = ρ2 Algorithm 1.1 Algorithm 1.2

# of iterations residual # of iterations residual

1.5 42 3.31 × 10−8 38 2.67 × 10−8

1.1 36 2.86 × 10−8 32 1.38 × 10−8

1.01 35 2.25 × 10−8 30 1.75 × 10−8

given in Table 2 as well. From these results, we also see that,
as indicated by Theorem 2.6, Algorithm 1.2 tends to converge
faster than Algorithm 1.1 too when it comes to computing X+

i .

4. Concluding remarks

The focus of this paper is on the two open problems raised
in Ivanov (2008) concerning the monotone convergence of the
accelerated Riccati iteration method as well as its rate of con-
vergence in comparison with the pure Riccati iteration method.
Our results aim mainly to settle these problems. In the process,
we also broaden and strengthen some existing results in Costa
and do Val (2004).

A unique and quite useful feature of the Riccati iteration
method and its accelerated version is their adoption of parame-
ters ρi’s, which leads to easy satisfaction of the stabilizability and
detectability conditions. In view of such parameters, wemay call
these methods ‘shifted’ Riccati iteration methods as versus the
‘unshifted’ Riccati iteration methods in do Val, Geromel, and
Costa (1999). Even though we have provided some guidelines
for choosing ρi’s, the numerical determination of the best ρi’s in
practice is an interesting topic for future research.

The idea of utilising the updated X(k+1)
i ’s in the regular

Riccati iteration method can be regarded as an extension to
similar works on the accelerated Lyapunov iteration method
(Guo, 2013; do Val, Geromel, and Costa, 1999). These, besides
Ivanov (2008), have also motivated our development in this
paper of theoretical results on the pure and accelerated Riccati
iteration methods.

Figure 1. The case of computing X−
i when ρ1 = ρ2 = 1.01: The left panel shows maxi∈〈2〉 ‖X(k)

i − X(k−1)
i ‖F from Algorithms 1.1 and 1.2, whereas the right panel

illustrates the monotonic increasingness of the sequences {X(k)
i } obtained from Algorithm 1.2. Note that in this case, λ2(X

(k)
i ) = 0 for all i and all k.
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Figure 2. The case of computing X+
i when ρ1 = ρ2 = 1.01: The left panel showsmaxi∈〈2〉 ‖X(k)

i − X(k−1)
i ‖F from Algorithms 1.1 and 1.2, whereas the right panel shows

the monotonic decreasingness of the sequences {X(k)
i } obtained from Algorithm 1.2.

Throughout this paper, we assume exact arithmetic in
analysing the two methods here. From a practical perspective,
however, the stability and sensitivity analyses on these methods
appear to be an interesting topic for future research too.

Another interesting topic for further investigation is a theo-
retical analysis comparing the performance of the two methods
here with that of other existing numerical methods for solving
the CCARE. In Ivanov (2008), for example, we can find only
numerical results concerning the performances of the meth-
ods under consideration here, Newton’s method, together with
the Lyapunov and the accelerated Lyapunov iteration methods.
Nevertheless, several theoretical results on the performances
of the ‘unshifted’ Riccati methods and the Lyapunov iteration
methods are presented in do Val, Geromel, and Costa (1999).
We expect, therefore, that parallel results in this regardmay also
be developed to include the ‘shifted’ Riccati iteration methods.

Recalling the remark following Theorem 2.4, upper solution
bounds play an important role in numerical computations on
the CCARE. In fact, lower solution bounds are equally impor-
tant. In Corollary 2.2, for example, X(0)

i ’s are indeed lower solu-
tion bounds. We feel that much work is still needed on simpler,
tighter, and more easily applicable upper and lower solution
bounds for the CCARE along with their applications in solving
the CCARE numerically.

Last but not least, the original framework in Costa and do
Val (2004) is more general in that it recasts the CCARE as one
of the special cases from a so-called perturbed algebraic Ric-
cati equation, abbreviated as PARE, involving a monotonically
increasing positive semidefinite operator. It is one more impor-
tant problem for us to explore as to whether the results here
can be extended, with some splittings of that operator, to more
effectively handle the general PARE.
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