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A B S T R A C T   

Grab sampling is often a convenient and cost effective way to sample bulk food materials, such as milk powder. 
On the other hand, modern auto-samplers can sample very small increments directly from the production process 
and they can be set to collect primary increments systematically. While the quantity of sampled bulk material is 
important, it is also necessary to consider the impact of sampling on quantitative risk assessment. When grab 
samples are drawn, the principle of randomisation is only partially met because of the inability to draw small 
primary increments at random. Food contamination (microbiological or otherwise) does not occur uniformly, 
and is often patchy or heterogeneous within a batch. Hence, even random sampling of primary increments does 
not amount to random sampling of pathogens or contaminants. As a consequence, the consumer’s risk is 
underestimated under the holistic assumption of complete randomisation. In this theoretical study, a correlation 
parameter is introduced to allow for lack of independence in the presence and absence of contamination, and 
then the effect of the various sampling methods on the consumer’s risk is examined. The main conclusion from 
this study is that grab sampling can increase the consumer’s risk by as much as 50% and hence additional 
sampling is necessary when grab samples are used for lot disposition when compared to directly sampling the 
product from the process, which can be done using auto-samplers.   

1. Introduction 

The International Commission on Microbiological Specifications for 
Foods (ICMSF) has published recommendations, guidelines and tools for 
microbiological sampling inspection over the years; see ICMSF (1986), 
ICMSF (2002), ICMSF (2009) and ICMSF (2011). Similar guidelines, 
policies, recommendations and standards relating to food safety, and 
particularly on the use of inspection plans for the food trade, have been 
given by the Codex Alimentarius; see CAC (1997) and CAC (2004). The 
Food and Agriculture Organization of the United Nations (FAO) and the 
World Health Organization (WHO) regularly promote joint expert 
meetings and publish recommendations on sampling plans for different 
micro-organisms of interest; see FAO/WHO (2016). 

Food products are typically bulk in nature, and hence random sam-
pling of food products is difficult unless they are packaged in small 
volumes. If the population of interest consists of N discrete items, a 
simple random sample of size n can be easily drawn using a random 
number generation tool. Even when food is packaged, random selection 
of packages does not amount to random selection of primary units or 

increments unless the quality or safety characteristic of interest is 
completely homogeneous. As the characteristics are microbial in nature, 
they cannot be randomly sampled at all. However, microbiological and 
other food quality sampling inspection plans are typically evaluated 
under the holistic assumption of random sampling. The bias caused by 
the non-random sampling method can be large. This bias can increase 
the probabilities of false negative cases and also reduce the probability 
of false positive and vice versa. In other words, the designated con-
sumer’s and producer’s risks under the chosen sampling inspection plan 
may be exceeded. Hence it is important to examine the violations of 
random sampling assumption for risk assessment and management. 

In the industrial production of powdered food products such as milk 
powder, usually robotic or automatic samplers are employed to sample 
very small quantities, such as 1g, from the production process. Auto- 
samplers are often set to sample systematically, such that a total quan-
tity such as 5kg can be accumulated to provide an overall representation 
of the product quality. Even though auto samplers can be programmed 
to perform random sampling, the common practice is to set them to 
sample systematically, for example every 5 min. 
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The term grab sampling refers to the draw of a specified quantity of 
material, and this sampling procedure is common not only for packaged 
bulk products but also the sampling of water, soil etc in environmental, 
agricultural, and geophysical studies. A grab sample is basically a 
“block” of successive or clustered unit amounts of the material drawn 
from flowing production process material at a particular time point or 
drawn as a block amount from a packaged material. Each grab sample 
can be viewed as a block of several primary increments. Even though 
grab samples can be selected both randomly and systematically, the 
principle of randomisation does not extend to the selection of primary 
increments. In other words, there is bound to be within grab sample 
variability and such variation is unlikely to be random. There is a 
scarcity of literature dealing with grab sampling theory. Gy’s Theory Of 
Sampling (TOS) literature is critical of grab sampling methods, because 
it ignores the irreducible fundamental error, and other material sub-
sampling errors in the test sample preparation; see Gy (1979), Pitard 
(1993) and Minkkinen and Esbensen (2009). The TOS literature warns 
that the grab sampling is the worst performing approach among all of 
the mass reduction approaches; see Minkkinen and Esbensen (2009). 
Mathematical modelling of the grab sampling method is scarce in the 
TOS literature because comparison is largely done using empirical 
methods. 

When food products are sampled for regulatory and export in-
spections, the underlying product is in packaged form. Hence most 
samples drawn from the batch must be treated as random grab samples. 
On the other hand, the producer’s quality and safety inspection schemes 
are based on grab or auto-samples drawn directly from the production 
process. Even though random grab sampling from the flow of the 
products over time is desirable, regulatory inspection cannot rely on the 
producer’s samples due to legal and consumer protection issues. The 
main aim of this article is to quantify the inefficiency of the grab sam-
pling method when compared to systematic auto sampling and how to 
possibly compensate for this inefficiency with higher sample sizes. 

In Section 2, an underlying mathematical formulation of the pro-
duction process incorporate sequential dependence via the primary in-
crements is given. Four possible methods of sampling are then described. 
The comparison of four sampling approaches based on presence - 
absence testing is discussed in Section 3. Finally, additional operating 
characteristic properties are studied in Section 4. 

2. Methodology 

Most powdered food products are produced in large volumes, such as 
20 tons, through a single production run. Even though the produced 
material is continuous and not discrete like nuts and bolts, we may 
define a very small quantity or primary increment such as 1g and then 
conceptually discretise the production volume (say, 20 tons) into a very 
long chain made of 1g primary increments. This approach of discretising 
bulk material production was employed in Govindaraju et al. (2017). Let 
the bulk material production process be modelled as a series {X1,X2,… 
,XN} where N = int(M /s) for known total production quantity M and a 
small primary incremental amount s. Usually, N is a very large number 
(in the billions) for food production processes but can be in millions of 
primary increments for kilogram scale pharmaceutical production 
processes. 

Let Xj = 1 or 0 depending on the presence or absence of contami-
nation. By our construction, the Xj’s are serially correlated. Contami-
nation is often spotty even when the main quality characteristics of the 
product (such as percentage protein and fat) are relatively homoge-
neous. We assume that the bulk material production process can be 
modelled as a one step two-state Markov chain with the transition 
matrix, 

0 1
P =

0
1

[
1 − a a

b 1 − b

]
(1)  

(0≤ a, b≤ 1), where a is the probability of contamination in the primary 
increment when it is absent in the previous increment. The difference 
d = 1 − a − b is interpreted as the serial correlation of the Xj’s in the 
statistics literature; see Bebbington and Lai (1998), Govindaraju et al. 
(2017). The limiting fraction of contaminated increments P(Xj = 1) = p 
is given by a/(a + b). An alternative parameterization of P in terms of p 
and d is given by, 

0 1
P =

0
1

[
1 − (1 − d)p (1 − d)p
(1 − d)(1 − p) p + (1 − p)d

]
, see Govindaraju et al. (2017).

(2) 

Detection of contamination not only depends on the prevalence p but 
also relies on the method of sampling. We consider four different sce-
narios. The first one is the direct simple random sampling of primary 
increments, while the second one is systematic sampling of primary 
increments. The other two methods are, respectively, random and sys-
tematic sampling of grab samples instead of primary increments. Table 1 

Table 1 
Glossary of symbols and abbreviations.  

M total production quantity 
S primary incremental amount 
N length of the production in primary increments 
Xi  contamination status of the ith primary increment  
a probability of contamination of the primary increment  

when it is absent in the previous increment 
b probability of contamination of the primary increment  

when it is present in the previous increment 
c acceptance number 
p limiting fraction or proportion of contaminated increments 
d serial correlation of contamination between the primary increments 
dg  serial correlation of contamination between blocks or grab samples 
k sampling interval of the systematic sampling procedure 
f sampling frequency of the systematic sampling procedure 
D serial correlation between the systematically sampled primary increments 
Dg  serial correlation between the systematically drawn grab samples 
P  transition matrix for Xi  

Pk  transition matrix for systematic primary increment sampling of Xi  

PGk  transition matrix for systematic grab sampling of Xi  

PD  probability of detection 
PND  probability of non-detection 
r grab sample size or the number of primary increments in a grab sample 
t number of grab samples 
n number of primary increments in selected samples (n = rt for grab samples)
yi  ith primary increment  
yi(j) jth primary increment in ith block (grab sample)  
pd  probability of detection in any block (grab sample) 
pnd  probability of non-detection in any block (grab sample) 

a*  probability of contaminated block given that the previous block is not 
contaminated 

b*  probability of uncontaminated block given that the previous block is 
contaminated 

μ location parameter (mean log) of the Lognormal and Poisson-lognormal  
distributions on the log10 scale 

σ standard deviation of the lognormal and Poisson-lognormal distributions  
on the log10 scale (default value 0.8) 

λ  arithmetic mean of the cell counts 
K dispersion parameter of the Poisson gamma distribution 
m microbiological limit 
⌈f⌉  ceiling or least integer function giving the smallest integer that is not smaller 

than f 
TOS  Theory Of Sampling 
ND  Non-Detect 
D Detect 
OC  Operating Characteristic 
OQ Outgoing Quality 
AOQ Average Outgoing Quality 
AOQL  Average Outgoing Quality Limit  
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gives the glossary of various notations and terminology employed for 
these four methods of sampling for contamination detection. 

2.1. Simple random sampling of primary increments 

Even though it is in practice very difficult to perform, we consider the 
simple random sampling of primary increments for comparative risk 
evaluation purposes. Under simple random sampling, serial correlation 
can be ignored and only the limiting fraction matters. Hence, if n pri-
mary increments are selected at random for a presence-absence type test 
on each sampled increment, the detection probability under the simple 
random sampling method is given by 

PD = 1 − (1 − p)n (3)  

2.2. Systematic sampling of primary increments 

Systematic sampling of primary increments can be implemented 
using a high-tech robotic auto-sampler. Let k = ⌈1 /f⌉ where ⌈1 /f⌉ is the 
ceiling or least integer function for upward rounding of 1/ f to an 
integer, and f is the sampling frequency of the systematic sampling 
procedure. If one primary increment is selected for every kth increment 
produced, the two-state Markov chain model described above applies. 
Systematic sampling from this process model is discussed in Vellaisamy 
and Sankar (2001) and Govindaraju et al. (2017). Let {y1, yk+1, y2k+1,… 
, y(n− 1)k+1} for some integer k ≥ 1, be the systematic selected 
auto-samples of n primary increments. Then the one step transition 
matrix for the two-state Markov chain of the presence and absence of 
contamination in selected auto-samples is given by, 

0 1 0 1
Pk =

0
1

[
1 − A A

B 1 − B

]

=
0
1

[
1 − p

(
1 − dk) p

(
1 − dk)

(1 − p)
(
1 − dk) p + (1 − p)dk

]
(4)  

where A = p(1 − dk), and B = (1 − p)(1 − dk); see Govindaraju et al. 
(2017). The steady state probabilities of Pk are the same as that of the 
original Markov chain P in Eq. (2). The serial correlation between the 
auto samples, D, is equal to D = 1 − A − B = dk. Following Vellaisamy 
and Sankar (2001), the probability of non-detection in two consecutive 
systematic auto-samples is given by (1 − A)(1 − p) and hence the prob-
ability of non-detection in a set of systematic auto-samples becomes 

PND =(1 − p)(1 − A)n− 1
=(1 − p)

(
1 − p

(
1 − dk))n− 1 (5) 

Alternatively we can express this as the probability of detection 

PD = 1 − (1 − p)
[(

1 − p
(
1 − dk))]n− 1 (6)  

where k = ⌈N /n⌉; see Appendix A for further details. 

2.3. Random selection of grab samples 

We now consider random selection of grab samples, which are 
basically blocks of primary increments. Each block has two possible 
outcomes ND (non-detect) or D (detect) depending on whether a 
contaminated primary increment is absent or present in a particular 
block. The state space {ND, D} also becomes a two-state Markov chain, 
and the serial correlation between blocks is given as dg =

[dp(1 − p(1 − d))r− 1
]/pd where r is the number of consecutive primary 

increments which form the grab sample (see Appendix A). 
Let the ith block be {yi(1), yi(2), …, yi(r)}. The probability of non- 

detection for the ith grab sample is given by 

P(non − detection in block i) = P(yi(1) = 0, yi(2) = 0,…, yi(r)=0) =

P(yi(1) = 0)P(yi(2) = 0|yi(1) = 0)P(yi(3) = 0|yi(2) = 0, yi(1) = 0)⋯
P(yi(r) = 0|yi(1) = 0, yi(2) = 0…yi(r− 1) = 0)

(7) 

This probability can be simplified as 

pnd =(1 − p)(1 − p(1 − d))r− 1 (8)  

which is valid for any block i, of size r, and hence the probability of 
detection in any block is given by 

pd = 1 − (1 − p)(1 − p(1 − d))r− 1 (9) 

Under random grabsampling, serial correlation between blocks can 
again be ignored, and hence the underlying Markov process converges to 
a series of independent Bernoulli trials. Consequently, if t grab samples 
are randomly selected and tested, the detection probability becomes 

PD = 1 − (1 − pd)
t (10)  

2.4. Systematic selection of grab samples 

Systematic selection of grab samples is difficult with packaged food 
product. Only the packaged unit of product can be sampled systemati-
cally and hence sub-sampling becomes necessary to obtain the regular 
analytical test sample amount, such as 10g. On the other hand, time 
oriented systematic selection of grab samples can be easily done using 
robotic samplers. For example, the auto samplers can be set to sample 
10g of samples every half an hour instead of selecting a very small 
amount such as 1g at every 3 min. Under this sampling method, grab 
samples (blocks) are taken systematically with sampling frequency f 
from the production process in a given period; where f = rt/N. Let 
k = ⌈1 /f⌉ be the systematic grab sampling interval, which means every 
kth lump of primary increments (block) is periodically collected from the 
production process. The results given in Vellaisamy and Sankar (2001) 
and Govindaraju et al. (2017) are valid for systematic primary in-
crements selection, but these results can be modified for systematic 
block selection, substituting for p with pd and d with dg. The resulting 
transition matrix for the one-step two-state Markov chain describing the 
systematic selection of grab samples is given by, 

ND D
PGk =

ND
D

[
1 − E E

F 1 − F

]
(11)  

where E = pd(1 − dk
g), and F = (1 − pd)(1 − dk

g). The vector of steady 
state probabilities is equal to [1 − pd, pd] which is different from the 
vector [1 − p, p] valid for the original series X’s. Also, the serial correla-
tion between the systematic grab samples becomes Dg = 1 − E − F = dk

g . 
The probability of non-detection with the t systematic grab samples is 
then given by, 

PND =(1 − pd)
[(

1 − pd

(
1 − dk

g

))]t− 1
(12) 

Hence the detection probability with the t selected grab samples is 

PD = 1 − (1 − pd)
[(

1 − pd

(
1 − dk

g

))]t− 1
(13)  

where k = ⌈N /rt⌉. If r = 1 and t = n then PGk becomes Pk and Dg be-
comes D = dk, which means that systematic grab sampling and sys-
tematic primary increment sampling methods become identical. 

3. Comparison of the four sampling approaches 

In order to compare the four sampling methods, we assume that the 
same analytical testing protocol will be followed irrespective of the 
method of sampling. For example, detection of Salmonella is based on 
incubation of the sampled material (grab or otherwise). 

For detection of Salmonella in milk powder intended for general 
consumption, the International Organization for Standardization (ISO) 
recommends to gather 30 grab samples of 25g each forming a total 
sample amount of 750g; see ISO, 2017 (2017). Let us assume that the 
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primary increment amount is 1 g of material (in order to be commen-
surate with the analytical sample amount for specific microorganism 
testing such as 10g for Cronobacter spp.). Let the batch quantity be M =

107g (or 10 metric tonnes) which are packaged in 400 bags of 25kg 
each. There is an obvious cost advantage in sampling the product during 
production before it is packaged, particularly using auto samplers. If 30 
grab samples are to be taken after packaging the product, it requires the 
bags to be opened and hence such a method of sampling may not be 
economical for small batch sizes. 

For the batch volume of N = 107, and sample size of n = 750 primary 
increments of 1g, Equations (3) and (6) produce almost identical prob-
abilities of detection values because k is very large for large N and d =

0.99, which is graphically illustrated in Figure B8 of Appendix B. The 
value of d adopted here is realistic for Salmonella because its occurrence 
is rather rare; see Morlay et al. (2016). Other words, probability of 
contamination of the primary increment when it is absent in the previ-
ous increment is expected to be close to zero in Salmonella testing. On the 

other hand, contamination such as foreign matter or chemical in the 
milk powder would be more consistent with a less extreme d value such 
as 0.9 which can result in a small difference between systematic and 
random sampling of primary increments; see Qin et al. (2017). The 
likelihood of Cronobacter spp. (formerly called Enterobacter sakazakii) is 
higher than the likelihood of Salmonella or Listeria in milk powder. For 
such pathogens, a value of d = 0.9 may be adopted. 

In other words, the systematic or random sampling of primary in-
crements will involve the same risk of non-detection of Salmonella in 
milk powder for the total sampled amount of 750g. It is easier to 
configure robotic auto-samplers to draw systematic samples of primary 
increments and hence this strategy is desirable. Auto-samplers can also 
be configured to draw systematic grab samples of 25g instead of 1g 
primary increments and also detection probability can be calculated by 
using Equation (13). This strategy is not desirable because of the drop in 
probability of detection as illustrated in Fig. 1. 

Fig. 2 compares the systematic grab sampling method for a total 

Fig. 1. Comparison of systematic grab sampling and systematic increments selection using autosamplers.  

Fig. 2. The effect of number of systematic grab samples on probability of detection.  
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sample amount of 750g formed by different combinations of r and t. It is 
clear from this figure that drawing many systematic grab samples of 
smaller amount is a better strategy to improve detection when compared 
to drawing fewer grab samples of a more substantial amount. However 
the probability of detection for the grab sample method will still be 
inferior to the systematic autosampling of primary increments. 

In the absence of auto-samplers, random grab sampling is the option 
commonly adopted. For t = 30 random grab samples and r = 25g, the 
probability of detection (of Salmonella in milk powder) remains poor 
when compared to systematic sampling of primary increments but at the 
same level of detection under systematic grab sampling. Testing for 

Salmonella is usually done using a subsample taken from the composite 
of the grab samples taken. Hence the probability of non-detection PND is 
the same as the probability of lot acceptance Pa (assuming that there are 
no false positive or negative errors). Fig. 3 (Case I) shows the PD under 
random grab sampling and systematic increments selection methods for 
various p and given t = 30 and r = 25g. 

The detection capability of the grab sampling method is improved 
with the increase in the number of grab samples taken as well as sample 
amount. Assume that 30 grab samples of 10g are taken for the detection 
of Cronobacter spp. in milk powder. These grab samples are often treated 
as random samples for risk modelling. Even though 60 grab samples of 

Fig. 3. Comparison of random grab sampling and systematic increments selection methods.  

Fig. 4. Average outgoing quality (AOQ) versus p for sampling methods with.d = 0.99  
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5g ensure better detection when compared to 30 grab samples of 10g, 
they still fall short of the detection under systematic and random sam-
pling from the process as seen from Fig. 3 (Case II). 

The sampling methods employed for the detection plans can also be 
compared for their outgoing quality (OQ) performance. Only batches 
that pass the detection tests are cleared for customers. Since PND is the 
probability of non-detection, the outgoing contaminated proportion of 
primary increments is given by the product pPND; see McShane and 
Turnbull (1991). The quantity AOQL is defined as the maximum pro-
portion of outgoing contaminated primary increments and is given by 

AOQL= max
0≤p≤1

pPND (14) 

We plotted AOQ for two different sampling schemes: 750 of 1g 
samples and 30 of 25g samples, as displayed in Fig. 4. The average 
outgoing quality limits of contaminated primary increments for the two 
sampling schemes are approximately 0.05% and 0.98% nonconforming 
respectively. Furthermore, systematic increments sampling achieves an 
AOQL of 0.05%, assuring that the worst fraction nonconforming the 
consumer receives as a long-term average is no more than 0.05%. 
Therefore, primary increment sampling, or in general, sampling small 
amounts more frequently, is more effective than the less frequent grab 
sampling method for protecting the consumer. 

4. Further operating characteristic properties 

Single sampling plan by attributes is the most commonly employed 
sampling inspection plan. The cumulative binomial distribution func-
tion gives the probability of acceptance: 

Pa =
∑c

x=0

(
n
x

)

px(1 − p)n− x (15)  

where Pa is the probability of acceptance, p is the proportion of 

contaminated increments, 
(

n
x

)

is the binomial coefficient, n is the 

number of primary increments in selected samples, c is the acceptance 
number and x is the number of contaminated increments. For the 
presence-absence testing for detection of food contamination, particu-
larly pathogens, the acceptance number is generally zero (c = 0), so the 
probability of acceptance becomes 

Pa =(1 − p)n (16) 

For risk evaluation in terms of microbial counts, the Operating 
Characteristic (OC) curve which plots the probability of acceptance 
against the underling concentration level is useful. Poisson mixture 
distributions are commonly employed for modelling the underlying 
microbial counts in the literature. Schothorst et al. (2009) and Gonza-
les-Barron and Butler (2011a) suggested that the Poisson-lognormal and 
Poisson-gamma distributions are particularly suitable for high and low 
microbial concentrations respectively. 

Let Y be the random variable representing the count of microor-
ganisms in a primary increment and m be the microbiological limit, then 
the probability of detection in a single primary increment is given by 
pd = P(Y > m). We can then compute the probability of acceptance in t 
samples as single plan by attribute which can be calculated from 
Equation (15). It is known that E(Y), the arithmetic mean of the cell 
counts, is equal to 10μ+0.5 ln(10)σ2 ; see Mussida, Vose, and Butler (2013). 

Let Z be the total count of microorganisms in the grab sample. 
Following Mussida, Vose, and Butler (2013), the count Z is nothing but 
the sum of identically distributed Poisson-lognormal random variables 
Y, thus the distribution of Z is also approximately Poisson-lognormal 
with mean μz, standard deviation σz where E(Z) = rE(Y). The 
Poisson-lognormal distribution is appropriate when the number of mi-
croorganisms follows a Poisson distribution with rate λ which is 
lognormally distributed. Then the probability mass function in terms of 
log mean concentration μz and standard deviation σz is given by, 

P(Z = z|μz, σz)=

∫ ∞

0
P(z|λ)f (λ|μz, σz)dλ (17)  

where the parameter μz, as the average count of microorganisms in the 
grab sample, can be estimated (assuming a fixed value of σz ) by 

μz = log10(λr) −
σ2

z

2
ln(10), (18)  

see Mussida, Vose, and Butler (2013). 
The probability of detection in a primary increment is given by 

pd = 1 − P(Z= 0|μz, σz) and so if we select t samples with zero accep-
tance sampling plan, the probability of acceptance is given by Pa =

(1 − pd)
t . 

In this paper, we fixed σz = 0.8 following Gonzales-Barron et al. 
(2013, p. 370), Jongenburger et al. (2015, p. 490) and others for the 
Poisson-lognormal case; see Dahms (2004), Schothorst et al. (2009), 

Fig. 5. Operating Characteristic (OC) curves of the sampling methods based on Poisson lognormal distribution with σz = 0.8.  

M. Thevaraja et al.                                                                                                                                                                                                                             



Food Control 120 (2021) 107512

7

Mussida, Vose, and Butler (2013) and Powell (2015). However, an OC 
curve can be constructed for different standard deviations as well. OC 
curves with different standard deviations such as σz = 0.2, 0.4 and 0.8 
are also shown in Fig B9 of Appendix B. From this, it can be seen that the 
OC curve becomes flat for large standard deviations. 

The Poisson gamma distribution is another suitable mixture distri-
bution for food safety management, and whose probability mass func-
tion in terms of arithmetic mean of the cell counts λ and dispersion 
parameter K is given by, 

P(Z = z|K, λ, r)=
Γ(z + K)

Γ(K)z!

(
K

K + λr

)K( λr
K + λr

)z
(19)  

where Γ is the gamma function. If r primary increments form the total 
quantity of the sample, the probability of detection is given by 

pd = 1 − P(Z = 0|K, λ, r) = 1 −

(
K

K + λr

)K

(20) 

If t samples are tested under a single sampling plan with zero 
acceptance number, the probability of acceptance is given by Pa =

(1 − pd)
t. Following Gonzales-Barron and Butler (2011b), the dispersion 

parameter K for the Poisson-gamma case can be fixed in the range 0.044 
and 0.401 and we used K = 0.05 for illustrative purposes; see Mussida, 
Gonzales-Barron, and Butler (2013). 

Figs. 5 and 6 show the design effect of various sampling schemes on 
the probability of acceptance for various contamination levels. It is clear 
that drawing 750 samples of 1 g increments provides superior protection 
to drawing the same total weight such as 30 samples of 25g or 10 
samples of 75g each. 

Another way to monitor the risk is to examine the outgoing quality 
(OQ) performance as a function of the process microbial count. Only 
batches that pass the inspection are cleared for customers. Since Pa is the 
probability of acceptance, λ is the arithmetic mean of the cell count and 
the outgoing contaminated arithmetic mean of cell count of primary 
increments is given by AOQ as the product λPa which is slightly different 

Fig. 6. Operating Characteristic (OC) curves of the sampling methods based on Poisson gamma distribution with K = 0.05.  

Fig. 7. Average outgoing quality (AOQ) versus arithmetic mean of cell count (λ) for sampling methods based on Poisson lognormal distribution with σz = 0.8.  
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to the classical AOQ formula. The quantity AOQL is defined as the 
maximum of outgoing contaminated primary increments and is given by 

AOQL=max
λ≥0

λPa (21) 

The AOQL limits of contaminated primary increments for the two 
sampling schemes such as 750 samples of 1g increments and 30 samples 
of 25g subsamples each are approximately 0.06% and 0.14% non-
conforming respectively. These limits of outgoing quality mirror the 
conclusion reached with the presence-absence testing based outgoing 
quality in 750g sampled as shown in Figs. 4 and 7. Therefore, we can 
conclude that sampling primary increments is more effective than grab 
sampling, resulting in higher protection to consumers. 

5. R package “grabsampling” 

We developed an R (R Core Team, 2020) software package grab-
sampling (available at https://github.com/Mayooran1987/grabsa 
mpling) for the probability of detection calculation for systematic or 
random grab sampling using a two-state Markov chain model. This 
package also draws the OC curves under various methods of sampling so 
that the efficacy of grab sampling for a different set of parameters can be 
assessed. The user can specify the parameters of the single sampling plan 
n and c. The package also allows for c > 0 even though the examples 

covered here are mainly based on c = 0. Description of our new package 
functions is available at https://mayooran1987.github.io/grabsamp 
ling. 

6. Conclusion 

This theoretical study has scrutinised the risk of non-detection when 
grab samples are employed, comparing it with the statistical ‘gold 
standard’ method of randomly sampling primary increments. Our 
approach allows for correlation of contamination in primary increments 
and the probability calculation is based on a two-state Markov chain. It 
was shown that the grab sampling method has a higher probability of 
non-detection when compared to sampling primary increments directly. 
We also presented a brief evaluation based on the OC and AOQ curves. 
The grab sampling methods exhibited enhanced risk of non-detection in 
general. So additional sampling is needed when grab samples are used 
for lot disposition when compared to direct sampling of the product 
from the process, with auto-samplers. 
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Appendix A. Mathematical proofs 

1. The transition probability matrix between blocks (PG). 

P(ND in block (i + 1)|ND in block i ) =
P(ND in block (i + 1), ND in block i )

P(ND in block i)
=

(1 − p)(1 − a)2r− 1

(1 − p)(1 − a)r− 1 = (1 − a)r
= (1 − p(1 − d))r

= 1 − a*(say)

P(ND in block (i + 1)|D in block i ) =
P(ND in block (i + 1), D in block i )

P(D in block i)
=

P(ND in block (i + 1) ) − P(ND in block (i + 1), ND in block i )
P(D in block i)

=
pnd − (1 − p)(1 − a)2r− 1

pd
=

pnd(1 − (1 − a)r
)

pd
=

a*pnd

pd
= b*(say)

Transition probability matrix between blocks is given by, 

ND D ND D
PG =

ND
D

[
1 − a* a*

b* a*

]

=
ND
D

[
1 −

(
1 − dg

)
pd

(
1 − dg

)
pd

(1 − pd)
(
1 − dg

)
pd + (1 − pd)dg

]

where a* = 1 − (1 − p(1 − d))r
, b* = a*pnd/pd, a* is the probability of contaminated presence in the block when it is absent in the previous block and 

serial correlation between blocks is dg = 1 − a* − b*. 
2. Serial correlation between blocks. 

dg = 1 − a* − b* = 1 −
a*

pd
= 1 −

1 − (1 − p(1 − d))r

pd
=

(
1 − p(1 − d))r

−
(
1 − p

)(
1 − p(1 − d))r− 1

pd
=

dp
(
1 − p(1 − d))r− 1

pd  

Therefore, 

dg =
dp

(
1 − p(1 − d))r− 1

[
1 −

(
1 − p

)(
1 − p(1 − d))r− 1]

3. Probability of detection for systematic selection of grab 

P(non − detection in t number of selected grab samples) = P(ND in block 1,ND in block 2,⋯,ND in block t) = P(ND in block 1)
P(ND in block 2|ND in block 1)P(ND in block 3|ND in block 1,ND in block 2) ⋯⋯P(ND in block t|ND in block 1,ND in block 2…ND in block (t − 1))
By the Markov property, = P(ND in block 1) P(ND in block 2|ND in block 1)P(ND in block 3|ND in block 2)⋯⋯P(ND in block t|ND in block (t − 1))

= pnd(1 − E)(1 − E)⋯⋯(1 − E) = pnd(1 − E)t− 1
= pnd

[(
1 − pd

(
1 − dk

g

))]t− 1 

Therefore, the detection probability of all of the selected grab samples is given by, 

PD = 1 − (1 − pd)
[(

1 − pd

(
1 − dk

g

))]t− 1 
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where k = ⌈N /rt⌉. 
For the probability of detection in all selected systematic auto-samples, fix pd = p, dg = d and t = n. Therefore, the probability of detection in all 

selected systematic auto-samples is given by, 

PD = 1 − (1 − p)
[(

1 − p
(
1 − dk))]n− 1  

Appendix B. Additional graphical displays

Figure B8. Comparison of systematic and random primary increments selection sampling.  

Figure B.9. Comparison of Operating Characteristic (OC) curves based on Poisson lognormal distribution with.σz = 0.2, 0.4, 0.8.  
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