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Abstract 
Since the last decade, microbial-induced carbonate precipitation has been proposed as an environmentally friendly tech-
nique to improve the engineering properties of soil. Despite the considerable progress on ureolytic bio-cementation, one 
of the major concerns that has not been solved yet is related to the production of ammonium. This study aimed to manage 
ammonium ions to attain a sustainable pathway for bio-cementation treatment. To this end, a two-stage treatment including 
rinsing of ammonium from soil combined with a recovery of ammonium was considered herein for the first time. In the 
rinsing process, the followings were studied to optimize ammonium removal from soil: the effects of pH, concentration, 
and the single salts of the rinse solution. In the subsequent ammonium recovery process, the effects of phosphate source, 
pH, molar ratio, and  Ca2+ ions were extensively investigated. The results revealed that at neutral pH conditions, ammonium 
removal was the lowest (68.82%). The  MgCl2 solution was found to have the greatest ability to remove ammonium followed 
by  CaCl2, NaCl, and distilled water (98.54%, 96.47%, 89.95%, and 74.77%, respectively). The ammonium recovery results 
showed that 86.8% of ammonium ions could be recovered as a high purity struvite (~ 94%), and that the optimum recovery 
was achieved at the following conditions:  Na2HPO4 as a phosphate source, the  Mg2+:NH+

4
:PO3−

4
 molar ratio of 1.2: 1: 1, and 

a pH of 8.5. Overall, it was demonstrated that the proposed method could be an effective way for sustainable ammonium 
by-products management.
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Introduction

Recent developments in the transition toward innovative and 
sustainable development in the engineering field have taken 
place by emerging multidisciplinary approaches aiming at 
reducing embodied energy and carbon (cutting greenhouse 
gas) emissions (DeJong et al. 2013). One such prominent 
technology in civil and environmental engineering is to use 
the process of bio-mineralization, more specifically micro-
bial induced carbonate precipitation (MICP). This process 
utilizes the mediation of biological substances to induce 
the cementation in situ, thereby enhancing the strength and 
stiffness of soils (DeJong et al. 2010; Kakelar and Ebrahimi 
2016). In MICP by urea hydrolysis, urease-producing bac-
teria are employed to catalyze the hydrolysis of urea into 
carbonate and ammonium (Eq. 1). Produced carbonate ions 
immediately react with existing or supplied calcium ions 
and form calcium carbonate crystals in the reaction medium 
(Eq. 2) (Whiffin 2004).

Following the success of laboratory level experiments of 
MICP with different purposes, such as increasing strength 
and stiffness (Amarakoon and Kawasaki 2018; DeJong 
et al. 2010; van Paassen et al. 2010), enhancing slope sta-
bility (Gowthaman et al. 2019, 2020), mitigating liquefac-
tion (Montoya et al. 2013; Moosazadeh et al. 2019), and 

(1)CO(NH2)2 + 2H2O
Microbial Urease

⟶ 2NH+

4
+ CO2−

3

(2)CO2−
3

+ Ca2+ → CaCO3 (s)

preventing wind erosion and coastal erosion (Daryono 
et al. 2020; Maleki et al. 2016), the application of MICP is 
becoming increasingly popular in civil engineering. Despite 
the enormous potential of MICP technology as a sustainable 
soil-improvement technique, developing a widely successful 
application requires a detailed understanding and managing 
of complexities, especially in the case of by-products (e.g., 
ammonium ions) (DeJong et al. 2013; Ivanov et al. 2019).

Ammonium products (ions and/or free ammonia) are 
often regarded toxic, and their release could lead to various 
environmental issues, including eutrophication, depletion of 
dissolved oxygen (Ye et al. 2018), blue baby syndrome, and 
cancers (Shah and Mitch 2012). Mainly, living organisms 
essentially require nitrogen compounds (Zheng and Wang 
2009). Nevertheless, exceeding the detoxify capacity for 
the ammonium nitrogen’s aqueous concentrations of ( NH+

4
 ) 

would result in severe health problems in living species like 
animals and humans (Paerl 1997). Untreated MICP efflu-
ents remaining in soils possibly pollute the groundwater and 
water bodies like rivers and lakes by runoff (Massoudine-
jad et al. 2019). Higher aqueous ammonia in surface water 
improves toxic algae blooms, reduces dissolved oxygen, and 
yields aquatic toxicity; the procedure is denoted as eutrophi-
cation (Paerl 1997). The highest reported concentrations for 
aquatic life are 17 mg/L (about 1 mmol/L) and 1.9 mg/L 
(about 0.1 mmol/L) total NH+

4
 , respectively, for chronic and 

acute exposure (Huff et al. 2013). From the reaction stoichi-
ometry (Eq. 1), it is expected to produce ammonium with 
a concentration twice the urea concentration. Based on for-
mer reports, ammonia production over MICP was regularly 
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within the range between 50  and  500 mmol/L (Lee et al. 
2019a, b; Martinez et al. 2013). For instance, sandy soil bio-
cementation needs 62 kg of calcium carbonate per 1 m3 of 
sand, causing the release of ~ 22 kg of ammonium (Ivanov 
et al. 2019). This indicates that MICP effluents need proper 
post-treatments to eliminate or recover ammonium and to 
satisfy water or wastewater quality standards. Bio-cementa-
tion technology faces a significant barrier that is the limited 
comprehension of post-treatment NH+

4
 removal, hindering 

environmental benefits and field-scale applications. Thus, to 
improve the efficiency of MICP application in geotechnical 
engineering, it is essential to manage and recover produced 
ammonium in the soil treatment process.

Various biological (Ma et al. 2016) and physicochemi-
cal treatment mechanisms such as ion exchange, nitrifica-
tion–denitrification, air stripping, and adsorption were 
proposed in the past for ammonium nitrogen removal in dif-
ferent industries (Huang et al. 2018; Rahmani et al. 2004; 
Ye et al. 2018). However, these mechanisms are laborious, 
likely impractical, and operating cost-intensive in geo-
technical engineering projects as they require consider-
able modifications in the condition of oxygen availability 
in treatment zones and chemical factors. Gat et al. (2017) 
revealed that the in situ oxidation of NH+

4
 could impose det-

rimental impacts on bio-cementation integrity resultant from 
the increased acidity in aqueous solutions. Supplementary 
strategies are required to address produced ammonium ions 
over bio-cementation.

Currently, only very few studies have assessed possible 
approaches to remove ammonium by-products following 
MICP. Zeolite reagents have been commonly used to adsorb 
ammonium ions from the effluent of treated areas with con-
sequent relevant remediation methods. For example, Putra 
et al. (2017) conducted a series of trials, in which they mixed 
natural zeolite with prepared grouting solutions. They found 
that the addition of 10 g natural zeolite/L solution could 

remove 75% and 45% of ammonium in reagent concentra-
tions of 0.5 mol/L and 1.0 mol/L, respectively. Keykha et al. 
(2018) used the natural aluminosilicate treatment to remove 
NH+

4
 from the aqueous solution of CO2−

3
 and achieved the 

standard ammonium concentration level in a cement solu-
tion. Recently, Lee et al. (2019b) have suggested that the 
ionic strength of the rinse solution is the main factor to deter-
mine the removal of NH+

4
 and the pH of the rinse solution 

has only a minor effect. However, only very limited works 
concentrated on possibilities of removing ammonium from 
the MICP system (effluents and also the cemented area), 
especially by focusing on ammonium recovery. To promote 
the MICP completely environmental-friendly, possible novel 
mechanisms should be addressed in further studies to man-
age or remediate ammonium from the reaction system.

Hence, in this work, experiments were performed to 
assess the struvite  (MgNH4PO4·6H2O) precipitation’s appli-
cability for ammonium removal from the reaction effluent 
system. The struvite mineralization, also called magnesium 
ammonium phosphate, is a potential nutrient recovery tech-
nique that can be effectively used to remove NH+

4
 and phos-

phate wastes (Jia et al. 2017).

It should be noted that this struvite technology has not 
been assessed so far for the MICP-ammonium recovery pur-
pose. Thus, the simulated-MICP effluent (SME) was pre-
pared synthetically and used in this investigation. According 
to Fig. 1, the study included two stages: first, washing ammo-
nium from sand, and second, the precipitation of ammonium 
as struvite. In the first stage, rinsing conditions including the 
pH level, the type of salts, and the rinse solution’s concentra-
tion were evaluated for optimizing ammonium removal from 
soil. In the second stage, the effects of pH, calcium concen-
trations, and molar ratio were investigated on the struvite 

(3)
HnPO

3−n
4

+Mg2+ + NH+

4
+ 6H2O → MgNH4PO4 ⋅ 6H2O + nH+

Fig. 1  The conceptual illustra-
tion of the two-stage treatment 
for the recovery of produced 
ammonium by-products in the 
MICP process
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precipitation. It should be mentioned that all the experiments 
were carried out at the Biotechnology for Resources Engi-
neering Laboratory of the Hokkaido University between 
December 2019 and June 2020.

Materials and methods

Soil material

For this research work, soil obtained from Onuma (Hok-
kaido, Japan) was used (42.388532N; 140.284762E). Soil 
can be classified as poorly graded fine sand in accordance 
with the unified soil classification system (USCS), with the 
mean particle diameter of 0.23 mm (ASTM 2011). The grain 
size distribution curve and summary of the XRF analysis 
results of soil are presented in Fig. S1A (refer supplementary 
file) and Table 1, respectively.

Soil columns

To check the efficiency of different solutions in rinsing 
ammonium ions from soil, small-scale sand column tests 
were conducted. Columns were prepared using 50-mL stand-
ard syringes with a filter paper at bottom. The predetermined 
weight of soil was added to the columns, and then, soil was 
packed using a custom-made‚ controlled-drop hammer fit-
ting inside the column to achieve a desired compaction den-
sity of around 1.5 ± 0.1 g/cm3.

Chemicals

In this initial study, the effluent solution was prepared syn-
thetically to reasonably simulate the MICP effluent, which 
is hereafter referred to as SME. It should be noted that due 
to complexity in effluent compositions, the direct use of 
MICP effluents was avoided, and instead, SME was used to 
clearly demonstrate all the effects in the post-treatment of 
ammonium by-products with reduced complexity and errors. 
Based on previous reports, effluents generated in the MICP 
process of each cycle contain ammonium ions in a range 
between 0.05 and 1 mol/L (Ivanov and Stabnikov 2017; 
Martinez et al. 2013). SME was prepared by mixing the pre-
determined amount of the  NH4Cl reagent (0.25 mol/L) in 
deionized water. Required stock SME was prepared 15 min 
prior to each experiment to reduce the possible evapora-
tion of  NH3 (Capdevielle et al. 2013). To prepare solutions, 

depending on the tests, variable amounts of  NH4Cl,  CaCl2, 
 MgCl2,  Na2HPO4,  K2HPO4, and NaCl powder were dis-
solved into deionized water. All the used reagents were of 
analytical grade.

Experimental procedures

Rinsing of ammonium ions from sample

Effect of  rinse solution The experiments were performed 
to evaluate the role of rinse solution chemistry, including 
solution pH, solution concentration, and different ions  (Na+, 
 Ca2+, and  Mg2+), in ammonium removal from the soil sam-
ples. The experimental procedures involved the following 
steps: (1) adding 25 mL (1.1 PV) of SME to each sample 
and then allowing it to stay in the column for 22 h until soil 
was completely saturated with NH+

4
 ions (this time period 

was considered the same as that in each cycle in the MICP 
process) and (2) subjecting each column to 130 mL rinse 
solution (~ 6 PV) to promote the desorption and removal of 
ammonium ions. It should be noted that the columns were 
gravity drained.

To measure how many ammonium ions were washed in 
each cycle, outlet solutions were collected in 10-mL portions 
and mass balance calculations were used to determine the 
percentage of removing ammonium.

Recovery of ammonium ions by struvite

Effect of  Na+ and  K+ in struvite precipitation tests in differ‑
ent pH Batch experiments were conducted to evaluate the 
effectiveness of  Na+ and  K+  (Na2HPO4 and  K2HPO4 as a 
phosphate source) and the effect of pH on ammonium recov-
ery by struvite precipitation from SME. Three replicate runs 
of struvite crystallization were carried out for each variable 
pH of 6.5, 7.5, 8.5, 9.5 and 10.5. In each struvite precipita-
tion test, magnesium  (MgCl2) and phosphate were added to 
50  mL of SME at  Mg2+:NH+

4
:PO3−

4
 molar ratios of 1:1:1. 

The mixed solution (total volume = 50  mL) was continu-
ously stirred at 300 rpm for approximately 15 min using a 
magnetic stirrer until a stable pH value was achieved. A pH-
meter probe was immersed in the solution to continuously 
monitor and measure pH values. During the precipitation 
process, NaOH and HCl were utilized to adjust the pH of the 
samples at the desired value. Then, the formed struvite was 
allowed to precipitate in the next 30 min. Afterward, 1.5 mL 
supernatant was filtered using a 0.22-μm membrane filter 

Table 1  The mineralogical 
composition of Onuma sand

Onuma sand Oxide

MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 V2O5 MnO Fe2O3

Percentage (%) 1.99 25.6 57.5 0.302 0.672 1.05 3.68 0.583 0.0278 0.137 8.1
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for the composition analysis and the precipitates were col-
lected. Subsequently, the samples were subjected to freezing 
at − 20 °C until further analysis. All the experiments were 
triplicated for each case and carried out at constant room 
temperature conditions in accordance with the procedures 
defined above.

Effect of molar ratio To evaluate the effect of  Mg2+, NH+

4
 , 

and PO3−
4

 concentrations on struvite precipitation, batch 
experiments were carried out. In addition to the stoichio-
metric ratio of struvite  (Mg2+:NH+

4
:PO3−

4
 = 1:1:1), the 

experiments were performed with different chemical dos-
ages at pH 8.5 (Table 2). As per the procedures described in 
Sect. 0, the mixed solution was treated.

Effect of calcium in SME The wastewater collected from the 
outlet of the MICP process contains calcium at different con-
centrations. The cation  (Ca2+) presenting in the MICP efflu-
ent might substantially influence the formation of struvite, as 
 Ca2+ can compete with NH+

4
 and  Mg2+ to form calcium phos-

phate compounds. To figure out the effect of  Ca2+ on struvite 
precipitation,  CaCl2 was added to SME so that SME could be 

prepared at varying  Ca2+:NH+

4
 molar ratios of (0, 0.1, 0.2 0.3, 

and 0.4): 1. As per the procedures explicated in Sect. 0, the 
mixed solution was treated.

Analysis

The pH of the solution was monitored using a Horiba F-71 pH 
meter. Total ammonium was measured using the colorimetric 
method according to the standard methods of the American 
Public Health Association (Jenkins 1982). The  Ca2+ concen-
tration was also measured using a LAQUA-twin  Ca2+ meter 
(HORIBA Advanced Techno Co., Ltd.).

Struvite is the target component, and the percentage of the 
precipitated struvite out of total solid precipitate is defined 
herein as the product purity. The purity was assessed in accord-
ance with the methodology suggested by Li et al. (2016). Most 
of the common struvite mineral impurities do not contain 
ammonia or ammonium. For a detailed explanation, potential 
precipitates are summarized in Table 3, along with the cor-
responding literatures.

For purity quantification, it was assumed that each mole of 
ammonium stands for one mole of struvite. For assessing the 
struvite purity, a certain quantity of the solid precipitate (oven 
dried) was dissolved into 1% concentrated nitric acid, followed 
by the determination of the NH+

4
 concentration. The colorimet-

ric method was used for the above measurement. Eventually, 
the struvite purity was computed using Eq. 4 (Li et al. 2016).

(4)Purity (%) =

nN ∗ Ms

mp

∗ 100

Table 2  Molar ratios of  Mg2+:NH+

4
:PO3−

4
 for ammonium recovery

Effect of  [Mg2+] Effect of [ PO3−

4
] Effect of 

 [Mg2+] and 
[ PO3−

4
]

0.8:1:1 1:1:0.8 0.8:1:0.8
1:1:1 1:1:1 1:1:1
1.2:1:1 1:1:1.2 1.2:1:1.2
1.4:1:1 1:1:1.4 1.4:1:1.4

Table 3  Different chemical compounds observed during struvite crystallization

Name Formula Jia et al. 
(2017)

Bayo et al. 
(2015)

Kumari et al. 
(2020)

Hu et al. 
(2020)

Liu and 
Wang 
(2019)

Struvite MgNH4PO4 ⋅ 6H2O + + + + +
Struvite—Na MgNaPO4·6H2O − − − + −
Struvite—K MgKPO4·6H2O + − − + −
Monenite CaHPO4 + − − − −
Magnesite MgCO3 − − − − −
Hydroxyapatite Ca5(PO4)3(OH) − − − − +
Dolomite CaMg(CO3)2 − + − − −
Octacalcium phosphate Ca8(HPO4)2(PO4)5·5H2O − − − − +
Brucite MgCO3 − − + − −
Trimagnesium phosphate Mg3(PO4)2 ⋅ 22H2O − − − − +
Newberyite MgHPO4 ⋅ 3H2O − − − − +
Tricalcium phosphate � - Ca3(PO4)2 − − − − +
Dicalcium phosphate anhydrous CaHPO4 − − − − +
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where  nN,  Ms, and  mp represent the moles of ammonium, the 
molar mass of struvite (245.4 g/mol), and the mass of the 
dissolved precipitates, respectively.

Results and discussion

Rinsing of ammonium ions from sample

Effect of pH and concentration

It was assumed that the pH of the rinse solution would sig-
nificantly influence the ammonium removal rate. To deter-
mine optimum pH for the rinse solution, the ammonium 
removal test was conducted with distilled water (D.W) at 
pH values of 5, 7, and 9. As shown in Fig. 2a, the removal 
efficiency of ammonium slightly decreased from pH 5 to 7 
and then increased in pH 9. This result may be explained 
by the fact that the concentration of  H+ and ionic strength 
increase as pH decreases. Thus, high ionic strength caused 
more desorption of ammonium ions from the negatively 
charge surface compared to pH 7 (Huang et al. 2015; Li et al. 
2012). The further increase in pH to 9 slightly increased the 
efficiency, which might be attributed to the expected trans-
formation of ammonium ions into aqueous un-ionized  NH3 
(Abukhadra et al. 2020; Shaban et al. 2017). It is noteworthy 
that more increase in pH values causes volatilized ammonia 
(Duan et al. 2013).

In the next step, the impact of the selected concentra-
tions (0, 0.05, 0.1, and 0.2 mol/L) of NaCl was assessed on 
ammonium removal. The results, as shown in Fig. 2b, indi-
cated that the ammonium rinsing efficiency increased with 
increasing the concentration. As the rinse solution concen-
tration increased from 0 to 0.2 mol/L NaCl, the ammonium 
removal efficiency correspondingly increased from 74.77 to 
78.95%, 83.06%, and 89.95%. Mainly, increasing the rins-
ing solution concentration induces a high removal efficiency 
due to high ionic strength. Several reports have shown that 
ammonium removal from adsorbents (e.g., zeolite) increases 
with increasing the regeneration solution concentration (Lee 
et al. 2019b; Zhang et al. 2017b). To determine the optimum 
concentration of the rinse solution, further experimental 
investigations on different soils are needed.

Effect of  Na+,  Ca2+,  Mg2+, and D.W.

To investigate the effect of single cation  (Na+,  Ca2+, and 
 Mg2+) on the rinsing of ammonium ions, the sand columns 
were rinsed with the 0.2 mol/L concentration of the NaCl, 
 CaCl2, and  MgCl2 solutions and also with D.W. The pH 
of all the solutions was adjusted to 9 ± 0.1. In Fig. 2c, an 
overview of the ammonium removal efficiency is shown for 
each solution as a function of the rinsing volume. Rinsing 

with the magnesium solution followed by calcium, sodium, 
and D.W exhibited the highest ability to remove ammonium, 
resulting in the ammonium removal of 98.54%, 96.47%, 
89.95%, and 74.77%, respectively. Furthermore, the ammo-
nium removal efficiency of  MgCl2,  CaCl2,  NaCl2, and D.W 
was observed to rapidly reach 74.65%, 73.25%, 69.16%, and 
73.14%, respectively, after rinsing with a 30 mL solution 
(~ 1.5 PV). However, a further rinsing with D.W resulted in 
only the ammonium removal of less than 1.5%. These results 
suggested that D.W. was ineffective in ammonium removal. 
Interestingly, the  MgCl2 solution exhibited a better response 
than all the other solutions. A probable explanation for the 
apparent effectiveness of ions in ammonium removal can be 
the assumption that they are specifically affected by ionic 
strength and charge density. For instance,  Mg2+ charge den-
sity (120  Cmm−3) is higher than  Ca2+ and  Na+ with charge 
densities of 52 and 24  Cmm−3, respectively. It is worth not-
ing that rinsing the cemented samples by the solutions only 
caused slight changes in calcite contents (Lee et al. 2019a).

In Fig. 3, the ammonium concentration is plotted as a 
function of the rinsing solution volume. This provides essen-
tial information regarding the volume of the rinsing solution 
necessary to achieve an acceptable level of the ammonium 
concentration in effluents or soil. In fact, the required vol-
ume is expected to rely on soil physical (e.g., specific sur-
face, porosity, and permeability) and chemical (e.g., cation 
exchange capacity) properties as well as the rinsing solution 
characteristics, and it should be derived based on specifica-
tions of each site.

Recovery of ammonium ions by struvite

Effect of  Na+ and  K+ in struvite precipitation tests 
in different pH

The phosphate source and pH were considered as factors 
affecting the ammonium removal efficiency by struvite pre-
cipitation. To obtain the maximum recovery rate of ammo-
nium, struvite precipitation experiments using  Na2HPO4 
and  K2HPO4 as the phosphate source were conducted at pH 
6.5–10.5 with the  Mg2+:NH+

4
:PO3−

4
 molar ratio of 1:1:1. The 

results of the experiments are shown in Fig. 4. It can be 
clearly observed that a higher ammonium removal rate was 
achieved at all pH levels using  Na2HPO4, as compared with 
 K2HPO4.

Struvite formation has been previously reported (Abbona 
et al. 1982). As struvite, K-struvite  (MgKPO4·6H2O), and 
Na-struvite  (MgNaPO4·6H2O) are isomorphous (the general 
chemical formula is  MgXPO4·nH2O, where X can be the 
following cations:  K+,  Na+,  Rb+,  Cs+, or NH+

4
 and n ranges 

between 6 and 8) (Banks et al. 1975), their crystallization 
mechanisms are considered to be analogous (Huang et al. 
2019a). Therefore, in light of the experimental conditions 
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Fig. 2  The NH+

4
 removal effi-

ciency from the soil columns: a 
the effect of pH, b the effect of 
the rinsing solution concentra-
tion, and c the effects of NaCl, 
 CaCl2,  MgCl2, and D.W.
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and based on the literature review, it was possible to infer 
that the following reactions may occur:

A possible explanation for this might be that K-struvite 
precipitated more than Na-struvite. Thus, it is concluded 
that  K+ has much more potential than  Na+ for phosphate 
and magnesium. In accordance with the present results, 
previous studies have demonstrated that the solidity of 
 MgXPO4·nH2O is highly associated with the ionic radius 
of X ions. A high ionic radius results in a high solidity of 
the compound (Banks et al. 1975; Gao et al. 2018). As  K+ 
has a higher ionic radius than  Na+, the crystal stability of 

(5)
Mg2+ + Na+ + HPO2−

4
+ 7H2O → MgNaPO4 ⋅ 7H2O + H+

(6)
Mg2+ + K+

+ HPO2−
4

+ 6H2O → MgKPO4 ⋅ 6H2O + H+

 MgKPO4 is higher than that of  MgNaPO4 (Huang et al. 
2019b). The collected precipitates were analyzed with 
XRD to confirm the composition of struvite. The XRD 
analysis of the samples (Fig. S2, refer to the supplemen-
tary file) revealed that the patterns matched well with the 
peaks for pure struvite.

In Fig.  4, it is shown that the highest ammonium 
removal rate (around 88% with using  Na2HPO4 and 
around 83% with using  K2HPO4) occurred at pH 8.5–9.5. 
These results concur with previous findings. According 
to Table 4, various optimum pH ranges were reported for 
struvite crystallization principally based on ammonium 
removal.

By reviewing the literature, the following explanations 
were found on the relationship between struvite precipita-
tion and optimum pH:

Fig. 3  Ammonium concentra-
tions in the outlet during ammo-
nium removal by the 0.2 mol/L 
 MgCl2 solution
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1. As the pH increased, Mg(OH)2 and  Mg3(PO4)2 were 
formed instead of  MgNH4PO4, which can reduce the 
 Mg2+ concentration to precipitate as  MgNH4PO4 (Li 
et al. 2012; Ryu et al. 2008).

2. According to the information available in the literature, 
the optimal pH values corresponding to Na-struvite and 
K-struvite are 12 and 11, respectively (Gao et al. 2018; 
Huang et al. 2019a, b).

3. As the phase change of ammonia (from ammonium ions 
to free ammonia) occurs at pH values greater than 8.5, 
ammonium ions cannot precipitate as struvite, and thus, 
a low ammonium removal rate can be obtained at a high 
pH range (Hu et al. 2020; Muhmood et al. 2019).

4. In the pH range lower than optimal, because of  H+ ions, 
the precipitation of struvite is inhibited (Li et al. 2012; 
Zhang et al. 2009a).

From the economic perspective, the pH value of 8.5 was 
taken to preserve chemical reagents.

Effect of molar ratio

To improve the ammonium removal efficiency, the experi-
ments were conducted at different magnesium, ammonium, 
and phosphate molar ratios. In Fig. 5, the variations of the 
ammonium recovery efficiency and the purity of sediments 
with different  Mg2+:NH+

4
:PO3−

4
 molar ratios are demon-

strated. Moreover, Fig. 5a shows the effect of changing 
magnesium molar ratios on the ammonium removal effi-
ciency and the purity of sediments when the molar ratio of 
 Mg2+:NH+

4
:PO3−

4
 was 0.8: 1: 1, 1: 1: 1, 1.2: 1: 1, and 1.4: 

1: 1.
As indicated in Fig. 5a, the ammonium removal efficiency 

and the purity of sediments increased by increasing the  Mg2+ 
molar ratio from 0.8 to 1.2; however, a further increase in the 
magnesium molar ratio resulted in an insignificant increase 
in the ammonium recovery efficiency and the purity of sedi-
ments. This indicates that  Mg2+ is a pivotal parameter to 
optimize ammonium recovery. The result obtained herein 
is in a good agreement with the results obtained by Huang 
et al. (2017) and Song et al. (2007), revealing that the stru-
vite formation efficiency increased by increasing the  Mg2+ 
molar ratio.

Next, the experiments focused on the effect of the phos-
phate concentration on the ammonium recovery efficiency 
and the struvite purity. Different molar ratios of phosphate 
were considered, as in the previous test. The purity of sedi-
ments declined from 92.3 to 75.1% with the increase in the 
phosphate molar ratio from 0.8 to 1.4. However, the removal 
efficiency reached the maximum value of 85.2% at the 1:1:1 
molar ratio and then gradually decreased with a further 
increase in the phosphate molar ratio. Moreover, the results 
showed that with an increase in the phosphate concentration 
more than the stoichiometric molar ratio of struvite (1:1:1), 
the purity of sediments and the ammonium recovery ratio 
decreased (Fig. 5b). Consequently, adding a higher excess 
phosphate is not advantageous, in particular when the stru-
vite purity is considered.

As observed in Fig. 5c, with increasing the  Mg2+:NH+

4

:PO3−
4

 molar ratio from 0.8:1:0.8 to 1.4:1:1.4, the purity 
of sediments decreased from 98.1 to 73.4%. Although 
the ammonium removal efficiency swiftly increased with 
the increase in the  Mg2+:NH+

4
:PO3−

4
 molar ratio, the low 

purity of sediments was also obtained. It was inferred that 
the other magnesium phosphate component precipitated 
 (MgPO4·3H2O,  Mg3(PO4)2·8H2O, or  Mg3(PO4)2·22H2O), 
apart from struvite (Desmidt et al. 2013; Li et al. 2016).

Thus, considering both ammonium removal and the 
purity of sediments, the molar ratio of  Mg2+:NH+

4
:PO3−

4
 at 

1.2:1:1 was effectively chosen to be the optimal ratio for 
ammonium recovery. However, this molar ratio is optimal 
from both economic and environmental points of view, as 
overdosing of phosphate and/or magnesium would possibly 
generate high concentrations of ions at the effluent. In addi-
tion, this molar ratio could eliminate the leaching of phos-
phate at high concentrations in the effluent.

Effect of calcium ions in SME

For the effective and economic recovery of ammonium 
from SME, the quality of struvite is highly significant. 
Calcium is a common component in the effluent of the 
MICP process. To investigate the effect of calcium ions 
on ammonium recovery and the struvite purity, a series of 
batch experiments with the following solution conditions 
were designed: the pH value was 8.5, the  Mg2+:NH+

4
:PO3−

4
 

Table 4  Optimal pH reported 
in the literature for struvite 
precipitation

Reference Optimal pH Mg source Phosphate source Removal rate

Maekawa et al. (1995) 7.5 MgCl2 KH2PO4 More than 90%
Li et al. (1999) 8.5–9 MgCl2 99%
Di Iaconi et al. (2010) 9 MgO H3PO4 95%
Altinbaş et al. (2002) 9.2 MgCl2 NaH2PO4 ⋅ 2H2O 68% to 72%
Zhang et al. (2009b) 9.5 MgCl2 Na2HPO4 88%
Huang et al. (2014) 8.5 MgO H3PO4 83%
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Fig. 5  The variations of the 
ammonium recovery efficiency 
and the struvite purity with 
different  Mg2+:NH+

4
:PO3−

4
 molar 

ratios
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molar ratio was 1.2:1:1, and  Ca2+:NH+

4
 molar ratios were 

0, 0.1, 0.2, 0.3, and 0.4. According to the experimental 
data shown in Fig. 6, it was found that ammonium removal 
and the struvite purity relied heavily on  Ca2+:NH+

4
 molar 

ratios in the initial solution. These results are consistent 
with those reported earlier (Hu et al. 2020; Yan and Shih 
2016). Liu and Wang (2019) reported that calcium ions 
highly competed with  MgNH4PO4 for phosphate ions and 
caused to form hydroxyapatite  (Ca5(PO4)3(OH)) and cal-
cium phosphate  (Ca3(PO4)2), thereby reducing ammonium 
recovery and the struvite purity. As shown in Fig. 6, it can 
be concluded that the effect of calcium ions on ammonium 
recovery was negligible at low  Ca2+:NH+

4
 molar concentra-

tions (i.e., 0.1:1 and 0.2:1) without significantly affecting 
the product quality.

As shown in Table 5, there were some pretreatment meth-
ods employed to reduce the effect of  Ca2+ during ammonium 
recovery by struvite crystallization. However, further experi-
mental investigations are needed to estimate the feasibility 
and practicality of these pretreatment methods, especially 
from the environmental and economic perspectives.

Application perspective

As the MICP effluent is absent in  Mg2+ and phosphate ions, 
extra chemicals need to be added, leading to high treat-
ment cost. This remains as a major constraint of the stru-
vite process. Few studies examined the cost reduction of 
struvite precipitation through the use of possible alternative 
materials.

Fig. 6  The variations of the 
ammonium recovery efficiency, 
the calcium concentration, and 
the struvite purity with different 
 Ca2+:NH+

4
 molar ratios
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Table 5  The overview of different Ca2+ pretreatment methods used in struvite precipitation

Chelating Precipitate  Ca2+ Precipitate  Ca2+ Precipitate  Ca2+

Principle Chelating agents react with 
calcium ions to form soluble 
[Ca-EDTA or Ca-oxalate] com-
plexes with more phosphates 
available

Precipitate  Ca2+ aushite Precipitate  C+ as CaCO3 Precipitate  Ca2+ as CaCO3

Material used Ethylenediaminetetraacetic acid 
(EDTA)

Nitrilotriacetic acid (NTA)

– Na2CO3 Imported  CO2 gas

Remarks - The process needs to be opti-
mized, because excess chelates 
might bind to  Mg2+

- Environmental concerns
- High cost

- Higher dose of phos-
phate is essential

- Cost optimization

- The quantity of CO2−
3

 needs to 
be optimized as toward minimal 
 Mg2+ loss rate

- High cost

- High pH
- High  Mg2+ loss rate

Reference (Sabbag et al. 2015; Zhang et al. 
2010)

(Muster et al. 2013) (Hu et al. 2020; Wu et al. 2018) (Hu et al. 2020; Zhang et al. 
2017a)
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As documented, Bittern (Etter et al. 2011; Lee et al. 2003; 
Li et al. 2019) and sea water (Matsumiya et al. 2000; Shin 
and Lee 1998) are two  Mg2+ sources with the  Mg2+ concen-
tration of 9220–32000 mg/L and 1300 mg/L, respectively. 
Moreover, the potential of struvite precipitation from vari-
ous waste sources of industrial, farm, and municipal ori-
gin has been established at laboratory scale (Kataki et al. 
2016). However, more studies should focus on eliminating 
economic challenges through the use of possible alterna-
tives, particularly, the use of industrial waste sources for 
ammonium recovery.

Considering investigations performed to date, only few 
researchers (Keykha et al. 2018; Putra et al. 2017) have 
focused on removing ammonium ions produced in MICP 
and enzyme-induced carbonate precipitation (EICP) using 
zeolite. Zeolite with a negative charge was able to adsorb 
NH+

4
 from the cementation solution to the desired level. 

However, the method proposed herein could recover ammo-
nium ions in the form of a valuable fertilizer.

Conclusion

The by-production of ammonium ions during biotreatment 
remains a massive hurdle, limiting the real-field applica-
tions and commercialization process of MICP. This study 
proposed a new post-treatment method, called a two-stage 
treatment process, for ammonium by-products. The results 
indicated that the proposed strategy was a simple, conveni-
ent, and reliable approach for ammonium management in 
geotechnical applications based on rinsing and precipita-
tion instead of the complex nitrification process and then 
recovered materials can be used. We observed that the ionic 
strength of the rinse solution had a significant effect during 
the rinsing step. We realized that using high ionic strength 
was more suitable and the pH of the rinse solution alone 
showed a small effect. Secondly, the proposed strategy can 
recover as much as 86.8% of ammonium ions in the efflu-
ent as high purity struvite by adding  Na2HPO4 and  MgCl2 
at pH 8.5 with a  Mg2+:NH+

4
:PO3−

4
 molar ratio of 1.2:1:1. 

Thus, the method can manage ammonium by-products by the 
recovery-centered approach instead of the remove-centered 
approach, which is vital in making the process profitable 
and sustainable.

The limitations of the two-stage treatment process are 
as follows. We did not examine responses of different types 
of soil as they have differences in composition as well as in 
physical and chemical properties. The effectiveness of this 
method was unclear in the meter-scale distance treatment. 
We also needed to add extra chemicals when ammonium 
precipitated as struvite, which could increase treatment cost. 
Therefore, further studies should focus on these aspects and 
enable the practical use of this method.
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