Sulfur-related metastable luminescence center in silicon

Mason, P.W.^{ac}, Sun, H.J.^{ad}, Ittermann, B.^{ae}, Ostapenko, S.S.^{af}, Watkins, G.D.^a, Jeyanathan, L.^{bg}, Singh, M.^{bh}, Davies, G.^b and Lightowlers, E.C.^b

^a Department of Physics, Lehigh University, Bethlehem, PA 18015, United States
^b Physics Department, King's College London, Strand, London WCR 2LS, United Kingdom
^c Lucent Technologies, 9333 S. John Young Pkwy., Orlando, FL 32819, United States
^d Philips Semiconductors, 9201 Pan American Fwy. NE, Albuquerque, NM 87113, United States
^e Fachbereich Physik, Phillips-Universität Marburg, 35032 Marburg, Germany
^f Center for Microelectronics Research, University of South Florida, 4202 Fowler Ave., Tampa, FL 33620, United States
^g Department of Physics, University of Jaffna, Jaffna, Sri Lanka
^h Department of Materials Engineering, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

Abstract

Optical detection of magnetic resonance (ODMR) and photoluminescence (PL) studies are described for the sulfur-related metastable defect in silicon first reported by Brown and Hall. It is established that its two configurations, A and B, are of triclinic (C₁) symmetry, and the incorporation of a single impurity atom with nuclear spin I=3/2 is confirmed directly by resolving its hyperfine structure in each ODMR spectrum. Detailed study of the conversion kinetics indicates the dominant A \rightarrow B mechanism under below band-gap excitation to be the result of direct optical excitation, not the result of exciton capture or the energy release accompanying the luminescence. The barrier for thermally activated B \rightarrow A return is 0.10±0.01 eV, with no evidence of an intermediate configuration. Stress-induced splittings of the PL are satisfactorily analyzed as the sum of that for a highly localized hole plus that for a shallow Coulombically bound effective-mass electron. A tentative model is proposed involving a substitutional sulfur atom paired with an interstitial copper atom in two different nearby configurations. The low symmetry results from the tendency of the Cu interstitial to go off-center from the tetrahedral interstitial position.