Kinetics and mechanism of the photooxidation of bis(bipyridine)dichlororuthenium(II) and the photoreduction of bis(bipyridine)dichlororuthenium(III) in chloroform

Sathiyabalar, S.^{ab} and Hoggard, P.E.^{ac}

^a Department of Chemistry, North Dakota State University, Fargo, ND 58105, United States
^b Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka
^c Department of Chemistry, Santa Clara University, Santa Clara, CA 95053, United States

Abstract

In air-saturated CHCl₃ irradiation of $[Ru(bpy)_2Cl_2]^{0/+}$ (bpy = 2,2'-bipyridine) with the full UV output of a 200-W mercury lamp converted the Ru(II) complex completely to Ru(II) at or below 58°C, and converted the Ru(III) complex completely to Ru(II) at or above 60°C. No thermal reaction occurred in either direction. The photooxidation takes place through a radical chain mechanism initiated by absorption of light by chloroform followed by C-Cl bond homolysis. This leads to the formation of trichloromethylperoxy radicals, each of which can cause the oxidation of two molecules of $[Ru(bpy)_2Cl_2]$. The mechanism proposed is consistent with the experimental rate law, $d[Ru(III)]/dt = a{flo[Ru(II)]}^{1/2}$. The photoreduction in deoxygenated solution takes place through direct excitation of $[Ru(bpy)_2Cl_2]^+$, which then oxidizes Cl⁻ to Cl atoms. Because of its short lifetime, only the Ru(III) complexes that are ion-paired with chloride ion can react.