A Study on CdCl₂ Activation of CBD-CdS Thin Films

W.G.C. Kumarage ^{1, 2}, R.K.K.G.R.G. Kumarasinghe ^{1, 3}, R.P. Wijesundera ⁴, C.P. Jayalath ^{1, 3}, N. Kaur ⁵, E. Comini ⁵, B.S. Dassanayake ^{1, 3}

¹Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
²Department of Science and Technology, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka
³Department of Physics, University of Peradeniya, Peradeniya, Sri Lanka
⁴Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka
⁵Department of Information Engineering, Universita Degli Studi Di Brescia, Brescia, Italy
Email: buddhid@gmail.com

Abstract

"CdCl₂ treatment" on CdTe absorber is known to be a key step for a drastic improvement of the CdS / CdTe solar cell conversion efficiency. However, CdCl₂ treatment on the CdS window layer has not extensively studied in the literature. In this work, a detailed study is reported on CdCl₂ solution treatment on chemical bath deposited of CdS (CBD-CdS). The CBD-CdS thin films were grown using 0.001 mol dm⁻³ CdSO₄ (3CdSO₄.8H₂O, 99%, Sigma Aldrich, USA), 0.002 moldm⁻³ CS(NH₂)₂ (99%, Sigma Aldrich, USA) and 1.1 ml of NH₄OH (NH₃, 35% w/w, Sigma Aldrich, USA) at a bath temperature of 80 °C for one hour on FTO glass substrates (~10 Ω / \Box , TEC 10, Sigma-Aldrich, USA). For the CdCl₂ treatment, deposited CBD-CdS thin films were dip-coated in a saturated methanol (99.8%, ACS reagent, Sigma Aldrich, USA) solution of CdCl₂ (99%, Fluka, USA). Later the CdCl₂ treated samples were cleaned with DI water and annealed at 200 °C for one hour. The dipping duration was varied from 0 to 20 minutes. The CdCl₂ treatment was found to increase the cluster size of CdS thin films and the formation of clusters was identified to be due to coalescence of small clusters. Higher V_{OC} and I_{SC} parameters in the photoelectrochemical cell (CdS/0.1 M Na₂S₂O₃/Pt) were observed for CdCl₂ treated CBD-CdS thin films, compared to untreated CBD-CdS thin films. The improved, V_{OC} and I_{SC} parameters found may be due to high effective area as well as grain boundary passivation. The flat band potential (V_{fb}) value was found to be tunable with CdCl₂ treatment duration. The photo efficiency was found to be almost doubled for CdS films which underwent CdCl₂ treatment for 10 minutes, compared to the untreated ones.

Keywords: CBD, CdS, CdCl₂, activation