Synthesis of Visible Light Active CuFe₂O₄/g-C₃N₄ Photocatalyst for Water Splitting

D. Maruthamani, S. Vadivel, M. Kumaravel

Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, India

Email: vlvelu7@gmail.com, svv.chem@psgtech.ac.in

Abstract

A facile g-C₃N₄ supported CuFe₂O₄ composite photocatalyst has been prepared by a simplistic onepot calcination approach using urea and a CuFe₂O₄ gel as precursors. The compounds obtained were analysed with Raman Spectroscopy, X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy(SEM) and Energy Dispersive Spectroscopy (EDS) in order to obtain their morphological and structural properties. Optical behaviour was studied by UV–vis Spectroscopy. In this composite, CuFe₂O₄ was finely dispersed in g-C₃N₄ matrix, resulting in much improved efficiency of CuFe₂O₄/g-C₃N₄ heterojunction in photocatalytic H₂ production by water splitting under visible light. The peak 104 µmol h⁻¹ was obtained at optimized loading amount of 3% CuFe₂O₄ in the composites, which was about 4 times of that on the pure g-C₃N₄ obtained from urea. This remarkable improvement can be attributed to the enhanced visible light absorbance, improved surface area and charge carrier separation and transfer ability.