Synthesis of MnNiO₃/Mn₃O₄ Nanocomposites for Water Electrolysis Process

B. J. Rani, S. Rathika, G. Ravi, R. Yuvakkumar

Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi, Tamil Nadu, India Email: yuvakkumar@gmail.com

Abstract

Hydrothermal method was optimized to produce highly efficient, novel MnNiO₃/Mn₃O₄ nanocomposites for water electrolysis process. The predominant peak observed at 36.6° corresponds to the X-ray crystal plane orientation of (1-10) and confirmed Rhombohedral phase MnNiO₃ and other well resolved peaks attributed to the MnNiO₃/Mn₃O₄ nanocomposites. Vibrational properties and metal oxygen vibration present in Fourier transform infrared profile around ~570-620 cm⁻¹. The oxygen vacancies and electron trapping mechanism were revealed from photoluminescence spectra. The combined morphology of nanorods and distinguished nanopetals was achieved for highly active MnNiO₃ nanocatalyst. The band structure and modification was thoroughly studied by UV visible diffuse reflection spectroscopy and the observed band gap was 2.8 eV for MnNiO₃/Mn₃O₄ nanocomposites. Cyclic voltammogram and linear sweep voltammogram studies investigated the redox behaviour and water oxidation nature of the novel MnNiO₃/Mn₃O₄ nanocomposites. Long-time durability of 24 h stability test was carried out and reported for the optimized electrocatalyst. Hence, the present study completely dealt with the preparation of novel combination of MnNiO₃/Mn₃O₄ nanocomposites using controlled synthesis technique and the exploration of optimized candidate for efficient water electrolysis process.

Keywords: Novel MnNiO₃/Mn₃O₄, Nanorods-distinguished nanopetals, Water electrolysis process.