Lattice strain gradient influences on steady-state rates of hydrogen permeation through membranes

Lewis, F.A.^a, Tong, X.Q.^{ab} and Kandasamy, K.^{ac}

^a School of Chemistry, The Queen's University, Belfast, BT9 5AG Northern Ireland, United Kingdom
^b Department of Materials Science and Engineering, Tsinghua University, Beijing, China
^c Department of Physics, University of Jaffna, Jaffna, Sri Lanka

Abstract

Permeation rate observations are reported which demonstrate the influence of lattice expansive strain gradients in producing nonlinear hydrogen concentration profiles through cross-sections of hydrogen diffusion membranes under "steady-state" conditions of hydrogen permeation.

Indexed keywords

Engineering controlled terms: Crystal lattices; Diffusion; Electrolysis; Gas permeable membranes; Strain; Surfaces

Engineering uncontrolled terms: Lattice expansive strain gradients; Steady state hydrogen permeation rates

Engineering main heading: Hydrogen