Hydrogen diffusion coefficient dependencies on hydrogen contents in PdAg alloys

Lewis, F.A.^a, Tong, X.Q.^b, Bucur, R.V.^c and Kandasamy, K.^d

^a School of Chemistry, Queen's University, Belfast BT9 SAG, United Kingdom
^b Dept. of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
^c Dept. of Inorganic Chemistry, University of Uppsala, S- 75121 Uppsala, Sweden
^d Dept. of Physics, University of Jaffna, Jaffna, Sri Lanka

Abstract

Values of hydrogen diffusion coefficients, D_H, calculated from measurements of hydrogen permeation through membranes, preferably require reference information concerning both surface and substrate bulk hydrogen contents n (H/M, atomic ratio). For satisfactory conditions of surface catalytic activity, appropriate values of n may also be able to be correlated with experimental parameters of temperature T and hydrogen chemical potential (as commonly represented either by hydrogen gas pressure p or electrode potential E) through p (E) - c (n) - T relationships. In cases of palladium and palladium alloys, estimations of D_H dependencies on n at relatively low temperatures (e.g. 25°C) have been quite widely derived by breakthrough technique considerations of electrolytic experiments. Latterly, however, it has been evidenced that determinations of D_H with initial membrane hydrogen contents of n > 0 can be substantially affected by strain gradients self induced by the diffusing hydrogen interstitials themselves. Assessments of such strain gradient influences on dependencies of D_H on n in the case of the technologically important Pd₇₇ Ag₂₃H_n system have also been discussed in preliminary reports. The present paper is concerned with further consolidation of allied information for Pd₇₇Ag₂₃ alloys.

Author keywords

Diffusion Coefficient; Hydrogen; Palladium; Silver