Solid state solar cell made from nanocrystalline TiO₂ with a fluorene-thiophene copolymer as a hole-conductor

Ravirajan, P.^{ab}, Haque, S.A.^c, Poplavskyy, D.^a, Durrant, J.R.^c, Bradley, D.D.C.^a and Nelson, J.^a

^a Ctr. for Electron. Mat. and Devices, Dept. of Physics, Imperial College London, Prince Consort Road, United Kingdom ^b Dept. of Physics, University of Jaffna, Jaffna, Sri Lanka

^c Ctr. for Electron. Mat. and Devices, Dept. of Chemistry, Imperial College London, Exhibition Road, United Kingdom

Abstract

We study the charge recombination kinetics and photovoltaic performance of composites of poly (9,9dioctylfluorene-co-bithiophene) polymer with nanocrystalline TiO_2 . Transient optical spectroscopy confirms that photoexciation of the polymer leads to electron transfer to the TiO_2 and indicates that charge recombination is slow with a half-life of 100µs to 10ms. Polymer penetration into thick porous TiO_2 layers is improved by melt-processing and treatment of the TiO_2 surface. We study the photovoltaic characteristics of devices with different layer thickness and interface morphology. Quantum efficiency (QE) of all devices is increased by reducing the TiO_2 and polymer layer thickness. Inserting a thin porous TiO_2 layer in to a thin bilayer device increases the QE by a factor of five. The improved device shows peak QE and monochromatic power conversion efficiencies of over 11% and 1% at 440nm respectively. The device produced a short-circuit current density of 300μ Acm⁻², a fill factor of 0.24 and an open-circuit voltage of 0.8V under AM1.5 illumination. The fill factor is increased from 0.24 to 0.40 by introducing an additional dip-coating layer and overall power conversion efficiency is increased by 50%. However, the device produced degraded currentvoltage characteristics. We investigate this using an alternative polymers and different top contact metals.

Author keywords

Nanocrystalline TiO₂; Polymer; Solar cells

Indexed keywords

Engineering controlled terms: Copolymers; Current density; Current voltage characteristics; Electrolytes; Nanostructured materials; Quantum efficiency; Titanium oxides

Engineering uncontrolled terms: Electron transfer; Nanocrystalline TiO2

Engineering main heading: Solar cells