Photovoltaic devices based on nanocrystalline TiO₂ and a fluorene-thiophene copolymer

Ravirajan, P.^{ac}, Haque, S.A.^b, Poplavskyy, D.^a, Durcant, J.R.^b, Bradley, D.D.C.^a and Nelson, J.^a

^a Ctr. for Electron. Mat. and Devices, Departments of Physics, Imperial College, London SW7 2BZ, United Kingdom ^b Ctr. for Electron. Mat. and Devices, Departments of Chemistry, Imperial College, London SW7 2BZ, United Kingdom ^c Department of Physics, University of Jaffna, Sri Lanka

Abstract

We report studies of charge recombination and photovoltaic device performance in structures consisting of a fluorene-bithiophene co-polymer and nanocrystalline TiO_2 . Efficient photoinduced charge transfer is observed using a TiO_2 film of high interfacial area while charge recombination is remarkably slow (~ms). The influences of thickness, surface morphology, top contact material, light intensity and ionization potential of the polymer are studied. Quantum efficiencies of over 11% and monochromatic power conversion efficiencies of around 1 % are achieved.

Indexed keywords

Light intensity; Optical spectroscopy; Photoinduced charge transfer; Power conversion efficiencies

Engineering controlled terms: Charge transfer; Concentration (process); Ionization; Morphology; Photovoltaic effects; Quantum efficiency; Quartz; Sol-gels; Spin coating; Titanium oxides

Engineering main heading: Copolymers