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Abstract

The integration of hybrid composite/metal stack panels in aircraft manufacturing introduces significant advancements by
combining the strengths of both materials. This review paper examines the critical role of coated drill bits in addressing the
challenges associated with drilling these advanced materials. Coatings, such as Ti-based and diamond coatings, are shown
to enhance drill bit performance by increasing wear resistance, reducing friction, and improving heat management. These
improvements lead to better drilling outcomes, including reduced temperatures, minimized delamination, lower burr forma-
tion, and superior surface roughness and circularity. The review highlights the effectiveness of various coatings and their
impact on drilling parameters like thrust force and torque, while also addressing the complexities of managing wear and
maintaining diameter consistency. Ultimately, the strategic use of drill bit coatings and careful optimization of drilling con-
ditions are essential for achieving high-quality results and advancing efficiency and sustainability in aircraft manufacturing.

Keywords Aerospace engineering - Drill bit - Tungsten carbide - Microscopic characterization and microanalysis - Wear -
Surface coating

Abbreviations CFRP Carbon fiber reinforced polymer
AITiN Aluminum titanium nitride coating CFRP/Al  Carbon fiber reinforced polymer/aluminum
AlTiCrN Aluminum titanium chromium nitride CrN Chromium nitride
coating CVD Chemical vapor deposition
ANOVA Analysis of variance C7 Nano-crystalline AITiN grains embedded
ASME American Standard of Mechanical Engineers in an amorphous matrix of silicon nitride
BUE Build-up edge (SizNy)
BUL Build-up layer DF Delamination factor
DLC Diamond like carbon
FMC Fiber metal composite
Highlights HSS High speed steel
. . — — IFTC Infra-red thermography camera
goog(ij‘fi::):ltllgvlfn(:e(zeztlngs exhibit small grain size, high hardness, and LWQ Local wear quantity
e Coatings re‘d‘lilce friction and thereby drilling temperatures, and MCD Microcrystalline diamond
improve hole quality. MD CFRP Multi directional Carbon fiber reinforced
o In CFRP, wear mechanisms include abrasion, edge rounding, plastic
and localized chipping. o , MoS, Molybdenum disulfide
e In metal panel, wear progression include adhesion, crater wear, L . L.
chipping, and fracture. MQL Minimum quantity lubrication
e Diamond, DLC, and TiAIN based coatings are mostly analyzed NCD Nanocrystalline diamond
by researchers so far. PCBN Polycrystalline cubic boron nitride
PCR Partial correlation regression
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ta-C+Ti  Titanium dopant added tetrahedral amor-
phous carbon

Ti Titanium alloy

TiN Titanium nitride coating

TiAlCr Titanium aluminum chromium coating

TiAICrN  Titanium aluminum chromium nitride
coating

TiAIN Titanium aluminum nitride coating

TiAlZrN  Titanium aluminum zirconium nitride
coating

TiSi Titanium silica coating

TiSiN Titanium silica nitride coating

UD CFRP  Unidirectional carbon fiber reinforced plastic

WwC Tungsten carbide

1 Introduction

Aircraft industries have recently concentrated on creating
hybrid composite/metal stack panels to improve the char-
acteristics of next-generation aircrafts. Hybrid stacks often
consist of materials comprised of multilayer fiber rein-
forced polymers (FRP) and metal alloys (titanium alloy
or aluminum alloy). The ability to improve some notable
characteristics without considerably raising total weight is
one of the key advantages of stack design [1-4]. The use
of composite and metal solves the shortcomings of metal
in terms of corrosion resistance and fatigue strength as
well as the shortcomings of composites in terms of bear-
ing strength, repairability and impact strength [5]. The
analysis of the use of titanium, aluminum, and compos-
ite materials in various commercial aircrafts are shown
in Fig. 1. It reveals a rise in composite and a decline in
aluminum in the aviation industry. The data of Fig. 1 are
obtained from Starke and Staley and Giasin [6, 7]. The
usual configuration of CFRP/metal stacks are CFRP/
Ti6Al4V and CFRP/AI (A12024, A17050, A17075) that
are broadly used by aerospace industries these days [4, 8].
Major aircraft manufacturers, such as Airbus and Boeing,
are extensively employing this multi-panel material in new
generation passenger airplanes with the aim to fabricate
structural elements such as skin segments, fuselages, and
wing connections which support energy conservation and
help system’s performance enhancement [9]. Thin lay-
ers of composite material and alloy panels can be used to
make these stack panels, and they can be joined together
by using adhesives like epoxy [10, 11]. Additionally, the
staking reduces defects such as hole surface roughness,
diameter error [12], exit delamination [13], and entrance
burr height compared to individual CFRP or metal panel
drilling [8]. Contradictorily, Xu et al. mentioned that there
are still a number of problems related with drilling com-
posite CFRP/Ti stacks in a single pass, including severe
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Fig. 1 The percentage usage of materials in (a) Boeing, (b) McDon-
nell Douglas, and (¢) Airbus aircrafts (PMC—polymer matrix com-
posite)

hole damage, and poor hole precision [9]. Various actions
are being taken in aircraft industry such as improving drill
bit geometry, optimizing drilling parameters, introduction
of coolant, and application of coating to minimize those
damages. This review article deals with the actions taken
through application of coatings to reduce the hole damage
and increase the tool durability.

In general, the composite-metal system provides
improved features such as CFRP’s superior corrosion resist-
ance, high specific stiffness, excellent fatigue strength [14,
15], light weight, and shape adaptability [16-21], while the
metal shows favorable strength-to-weight ratio, isotropic
behavior, strong fracture resistance, superior repairability
[22, 23], low density, and high hardness [24-26]. In CFRP
composites, the strength of the composite material is mainly
governed by the fiber. Despite the fact that CFRP parts are
frequently produced in ready-to-use shapes, machining pro-
cedures (such as drilling, pocket milling, or edge milling)
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are frequently necessary to meet functional and dimensional
requirements [27].

CFRPs give huge challenges and difficulties for machin-
ing [20, 28] since it comprises extremely abrasive carbon
fibers that create abrasive drill bit wear and drill bit edge
chipping [29-32]. Mechanistic and numerical modeling of
machining CFRPs continue to be challenging tasks in both
academia and industry because of its anisotropic behavior
and heterogeneous structure [33-35]. The most challenging
aspects of commercial cutting of CFRP materials remain the
active management of the in-process reactions, including
drill bit wear, machining temperatures, acoustic emission
(AE), and cutting forces [36-38]. Because of the limited
thermal conductivity of CFRP, the cutting temperature is
exceptionally high, which results in lowering the quality of
the drilled hole by loss of epoxy on CFRP surfaces, and the
softened matrix being smeared at the tool-work boundary
[39].

Ti alloy, on the other hand, due to its intrinsic character-
istics, such as low modulus of elasticity, low heat conduc-
tivity, and high chemical affinity to drill bit materials, is
still recognized in the modern manufacturing community
as an incredibly challenging material to cut. Ti6Al4V is the
alloy form of Ti which is vastly used in the aerospace indus-
try and it has great strength and little thermal conductivity.
When adjusting the drilling speed to 75 m/min from 25 m/
min in dry conditions, drilling temperatures can reach from
500 to 1000 °C in Ti6Al4V alloy [40]. This causes a num-
ber of drill bit wear issues, including cracking, chipping,
and non-uniform flank wear [41]. Due to the high chemi-
cal affinity of the drill bit material with workpiece and the
high cutting temperatures, built-up edge (BUE) and diffu-
sion issues might occur while drilling titanium alloys [42].
Poor surface integrity, quick drill bit wear, and high force
and temperature generation can all cause unique problems.
Additionally, the composite-panel drilling has a substantial
interrelated influence on the Ti-drilling operation, making
the cutting processes more complex than in cases of single
Ti alloy drilling [4].

In aircraft constructions, drilling is a common machin-
ing technique used to produce round holes of various sizes
and depths. Three hundred thousand to three million holes
may be present in commercial aircraft [7, 43—49]. Drilling
these holes can provide significant challenges due to the vast
differences in the characteristics of FRP and metal panels.
Matrix distortion, delamination, fiber shrinkage, hole size,
hole circularity, exit burr effect, and other phenomena of a
like kind are some of these [4, 14, 15, 20, 22, 50-52]. These
issues are the reason for around 60% of all part rejections
[11, 43, 53-55].

The main goal of this study is to present an in-depth
analysis of drill bit coating application which may result
in less friction in tool work interface and thereby reduce

the drilling temperature to provide solutions for problems
in stack drilling of the aircraft components. There are not
any review papers in regard to the application of drill bit
coating while performing FRP/metal stack drilling for the
aircraft applications and this review paper is expected to
fill this gap to give a detailed idea to help the aircraft
industries. First, the key challenges of material usage in
aircraft industry are discussed in terms of metal and com-
posite stacks. The different types of coatings used and their
merits and demerits will be briefed in the next section.
Then, the performance indicators of the manufacturing
defects in terms of drilling forces, tool wear, and tem-
perature generation will be discussed. The key findings
of experimental studies conducted regarding the applica-
tion of coating for drill bit over the past few years while
performing FRP/metal stack-up drilling process and their
impact on hole quality will then be outlined. By emphasiz-
ing relevant findings from the literature, this review paper
strives to bring forth the benefits of coating drill bit and
comparing the outcomes of different coatings.

2 Introduction to coating

Coating is a thin layer of a protective material, applied to
the drill bit's surface. By increasing the drill bit's lifespan
and enhancing its chemical and physical stability at high
temperatures, the coating enhances the drill bit's perfor-
mance and permits faster cutting rates [56]. These coatings
have been tested for increasing drill bit wear resistance and
life as well as lowering production and setup costs [57].
In comparison to uncoated bits, coated bits are stronger,
more lubricated, sharp, heat resistant, and durable [58].
While machining, coatings prevent drill bit overheating
and adhesion of lump chips [57]. In manufacturing, drill
bits are typically coated with either physical vapor deposi-
tion (PVD) or chemical vapor deposition (CVD) methods
[59]. Drill bits with PVD-TiAIN coatings are frequently
utilized in metal drilling processes due to their excellent
chemical stability, wear resistance, and hardness. Typi-
cally, the PVD laborious coating will increase the life of
the drill bit and improve machining performance [60, 61].
Kwon et al. followed the CVD procedure to diamond coat
the step drill and discovered that the grains are initially
quite coarse, but when the coating duration is increased,
the grains become fine and the surface becomes smoother
[62]. Table 1 summarizes the research works carried out
on drill bit coating application in CFRP/metal drilling pro-
cess in aircraft manufacturing sector. The detailed specifi-
cation of workpiece and tool, the cutting environment, the
coating type and method, and the machining parameters
used—all are concisely briefed in the table.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology

(08€€ IN9OH) [10 [qNJOS JO %8/, SUILIUOD JeT) Teq ()L

Jjo amssaid dwind pue urwy[ G| punole jo 9je1 mop e je parjddns uors[nwo [10/19)em—pIng Jumn)d

ASI/WW CT°0 [0 SO°0 =938l pasg

o0€T =9[8ue Juroq
o0€ =9[3ue XI[oH

w g =SsI

yueys Surpuodseriod pue
0t = (wur) y3ue| Sumn)
S¢'9=(ww) 1oewelq

(€914V I €) WY da1saype

jsnqoz e Sursn 1043330} pautol
Q1M TV PUB ‘D LL UL

00/0S1/606/05€1/60/oS—U0N
-BJUSLIO JOqL]

(SLH/T-LLE 991KD)

s3axdaxd 1oqy uoqres oy

wr Gz 1°( ‘Teuondaxprun—dJy4D

(urwy/ar 0Z1/09) /A1 0009/000€ (Ut SIIHP DM Cronp
/W 08/0) UIW/ASI 000F/000T “(UIW/UW (/0T) UIW/ASI 000Z/000T =1V PUe d¥AD/LL—P3ds Sumny  pajeod /3 pue pajeod puow wu O St [oued Yoe) [Gir/ ],
[99] istw Aeids pue Jom—3urjo0)  -eIp (AD ‘PAIe0dUN—SUNE0) 0S0L IV/dIAD/A v-1V9-IL
8 €[00/0St/606/0SE1/00/0S ]
Qouanbas A
W G¢°9 = IJQWRI %696 01 [enba
-0t =9[3ue jutog S19qQQ uoqgied jo agejuadrad
[10 [eIoUIW 9[qNJOS %8—/ SUIUIBIUOD ‘Teq ()L ,0¢ =9[3ue XI[o  awnjoA & y)im s3aidaid [euon
Jo anssaxd e pue ury[ O¢ JO 9)el MO[ B J& A[[eUIUI PIISAI[OP UOIS[NWD paseq-1jem—ping Sumn) oF1 =9[3ue Jo1[oy  -o21IpIun 9¢ Jo Sunsisuod JIJD
Sunpoad OWIM PUE YITA\  S[ILIP ISTM) DAQ PAIEOD-NIL Oy w7 st eued yoey)
[<9] 80°0 ‘$0°0= (av/WU) pad] /NIVLL Pue pajeooun—=suneo) 0SOLVV/dIdAD/AVIVILL
pajeO0d
O-NISLLIV pue NIDIVIL
‘puowrelp ‘pareodun—suneo))
0TI =9[8ue Jutod
utwy/u 91 =TONW 0€ =9[SUE XI[oH Wt 1 SSAUNOI O10L IV
AQI/WIW $()'() = P9] 9=(wuw) I9jewelq W 6] Jo ssouory Ajd o3e
UIW/WW ()7 = 9¥el pAd] 9¢'T = (W) SSAUYOIY) QOA\  -IOAB UB PUB W / ST SSOUIIY
urw/w ¢6 = paads Sumn) Gz = (wur) y3uey AN 9y1sodwod RUOTIOITPTINIA
[+9] uru/Adx Q0¢ = paads ofpurdg [[LIp urSrew o[qno [SPLI-0TOLIV/ddAD
-0 1 =9[3ue sodwod pue wnurwne
jurod ‘wwr ¢4 = y33u[ 9y urof 0) pasn sem on[3
AQI/WW €9T°() AW )0Z°0 paoq any ‘ww g'9g=10)owerp  Axods Jo I1oke] Yory-ww-Gz 0 V
urw/wuw )0z [ /W 0)0¢ [ Q81 pasyg JONQ [[LIP PajeOs-NIVIL %9€ PUB %19 91om UIsal
urw/A1 0009 uru/A1 0008 paads opurdg o811 =2[5ue PUT 124y JO UOROBL} JUSIoM
: : ’ turod ‘wrwr ¢ =yiSudf wu 87 JIAD
utw/w ('8¢l /w8 QLT paads Sumn) ANy ‘W §'9 = ISJWeIP puUe WW ['9Z [V JO SSOUNOIY ],
[€9] NIVLL o1da Suneo) J031q [[Up pareod-51d dIAD/SLOLIVIAEID
Ioyny JUSWIUOITIAUS PUR SIdjoweIed SurLIq suoneoyroads 1007, suoneoyroads aoardsrop

Sul[[LIp [BLId)RW YOB)S JOJ PAsn S[00) Pa)eod Yy Surpie3al s[rejop jo Arewwing | ajqel

pringer

AQs

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology

SI°0 PUB ‘[°( ‘S0"0 = (AdI/w) pas
[oL] UIW/ARI 0GLT ‘00T ‘0SOT = paads a[purdg

ASI/WW 1°0 “SL0°0 ‘SO"0 ‘$TO'0 =9l pd]
UIwy/AdI 600€ ‘97T “Y0ST ‘TSL=paads arpurdg
[69] uruwy/w (09 ‘S ‘¢ ‘1 =poads Sumn)

(08€€ IMOOH) [10 A[qN[OS JO %8~/ SURIUOD TRy} JBq ()L
Jo amssaxd dwind pue urwy[ G| punoie jo jer mofj e je parjddns uorsinwa [10/19)em—pIng sunin)
Adljut 61°0 [°0 SO0 =238l pasg

(urwy/ar OZ1/09) Urw/Ad1 0009/000€ ‘(ur

/W 08/0t) UIW/AST OO0F/000T ‘(UI/W (7/07) UIW/AI 000Z/0001 =1V Pue JYJD/LL—poads Sumn)
[89] ISt Aeids pue Jom—juoUIUOIIAUE

09€ 1 =29[3ue Julod

w9 = J9)WeI(]

wirl 7¢ g = ssouwyory) Juneo)
pa1e0d (umly o[ddur) NS

-e/N[VID-Ou pue pajeooun)

oSE1 =9[3ue julod
0T =9[3ue XIoH
Pa1e0d NVLL pPuR pajeodun)

,0€ T =9[8ue Jutoq
o0€ =9[3ue XI[oH
8= ()
9z1s yueys urpuodsario)
Ot = (W) YSud] Sumn)
G¢"9 = (ww) IoRouerp HA
parR0d-LD
pue pajeod-puoweIp qAD
‘pareooUN—S3uneod [

yory) wirl 4 = Suneod puowreI(
-,09 =9[3ue jurod [[LIp puod9S
o0€ 1 =2[8ue jutod [[LIp ISIL]
o0€ =9[3ue XIoH

W ¢ = SsaudIy) 20T IV
%8G SI UOTIOBI] QWINJOA JOqI]
wwr 67" = SSaudIY) Y40
sond 91
s 3axdaid reuonoarprun
Jo opeuwu st 9jerd arsodwod oy,
Y2ocIv/dddd

s [0/Sy+/06/Sy+/
0/SY —/0/S¥/06/SY — 10/0/S¥ +/

0/St—/S¥+]1 ST dYAD 116840
/00L.L Jo ouanbas Junyoels ay [,

W G = SSAUIIY) [y
W 67 = SSAuydIY) YD
JdIAD/PT0TIV/dIID
(€9TAV N £) WY SAIsaype
jsnqo1 & Sursn 19y3a303 paurol
QIom [V Pue ‘d¥dD IL YL
00/0S¥/006/0S€1/:0/cST—u0n
-BJUQLIO JOQL]
(SLH/Z—LL6 99£D) s3axdaxd
19qy uoqred youy) wwt 671 0
‘[euonoanprun—dyD
(yorp
ww (O st [oued yoed) 16/ L
0SOL IV/dIdD/A 7-1V9-LL

s [0/S¥+/0/S¥ — 106
/S¥ —106/St+/0/SY +/0/SY —/

0/SY — /06/S¥+/0/SY +/0/St —
/0/Sy F]—>aouanbag dn-Zuike|

pue sord-[euonoaaprun gy jo

apeur st 9jeurwre] Arsodwod
d¥D "%S$9 = UONOTL AWN[OA
d¥D W 9=V JO SSAWPIY,
W "8 = dddD JO SSUYoIYL,

Ad1/wwr 80°0 “90°0 “v0°0 TO'0 = 9181 pad] €66 =(ww) 1ewelq IV 191
[£9] urw/Ad1 000€ ‘0002 ‘0001 =Ppa2ds o[purdg  §°¢ = (ww) ySus[ 93pa Surmn) -CLOL PUB JYID 0S8X/008.L
loymny JUSUWILOIIAUD pUE s1djowered SulfLiq suoneoy1oads [00], suoneoyroads 90a1dyIopm

(ponunuoo) | sjqey

pringer

As

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology

UIW/WW (0§ =PI

S[IHp

d¥4D an awerd

[eL] Urw/Ad1 000 ‘00ST ‘0001 =Ppa2ds 1SIM) 9pIqIed PoJeod-NIVLIL  APIVOLL PUe J¥4D 106L/00LL
-07 =9[3ue 20URIRI[O pUy
o1 =9[Sue 00URILO[O JS] WU §7°9 = SSAUOIY) AHIVILL
o0 =9[3ue oxey W 0979 = SSaWdI) JHAD
ww gz'0=YISud[ 23pa [9s1YD 9()9 = UOTIOBI} WIN[OA 13q1]
wur gz =3suef 98pa Sumn) S ["(,06/0S 7705t~ /o0)]
0PI =9[3uejulod  9ouanbas dn-Aef oy 03 pajoal
-0€ =9[Sue XI]oH -qns S19qY U0qIed O0LL
W 9 = J)WeI o3 £q paoroyurar onsed
ainssaxd are passardwod jo BN 9°0 SIIIP DM Sumesowntayl (€0-dZA
puE 2JeI MOY /[W-G] ® YIM (0002 AN TOUDIIN) SOIqeI2SoA wolf opew [10 Sumnd-o11jy  (wr ()] =7) Pajeod-puowueIp -QY4) peseq Axoda ue
09 Pue ‘G ‘0¢ ‘ST = (uruyur) spaads Sumny AAD pue (wn §~¢=7) Sem QJRUTE] JA1D YL
[1¥] 001°0 PUB ‘SL0"0 “0S0"0 “STO'0= (Ad)/WIW) S)LI PIo] Paleod-NIVLL dAd AVIVOLL/dEAD
oSET ‘811 ‘606 = SA[3ue JuIog
o0€ =9[3ue XI19H
wm —G' [ = ssouyoIy} Sureo))
S[IHIP SSH Pa1eod
A1oanoadsar ‘gp09 Pue ‘000S ‘000t = (utw/aa1) spaads ojpuids Surpuodsario) -NLL pue NIVLL, ‘Po1eoou)  UONEIUILIO IdqY UIAOM ,(06/.0
[Ll 0ST pue ‘g1 00T = (urwyw) poads Sumn) i @ = Iejurelq [SOI-€T1091V/d 4D
oSET =9[8ue Jurod
oST=0[3ue XI[oH
(sammy 9,09 = UOT}OBIJ QWINJOA
7) 1'8¢ = (ww) |3ud] aIngg s
$T6 6= (ww) 1joweid  [(06/0/06/0)" (1St = /106/5+/0)]
wrl ¢ = ssauyory) Suneo) Qouonbas dn-Ae
0D %6-0M xmeur Kxodo yIm I YL
JO opeW S[[LIP PILOd-NILIV ssouyo1y) A[d 93eroae ww
UI/[W 9T JO 918l MOj APeals © Sey pue Iojem UI SOA[OSSIP Jey} JUB[00D |  PUR ‘Pjeodun ‘pajeod—XInewl  -G88['() B YIm W $G°/ = SSU
pakorduro a10m 91BI PIJY JO ASI/WIW §()G()"() PUB UIW/AdI ()OS ‘[oued 1], Sur[[up uoypy  'NEIS £q popunoiins sureid -ory) geutwre] LD
[1L] QeI PO9J AQI/WW 9/()'() PUB UIL/ASI (009 J& dUOp sem [oued J¥1D SulLq NLLIV QuI[[eIsKIooueN wur ¢/ '9="ssauydry A #-[V9-IL
o0F [ =9[3ue Jurog
T’ LT=9l3ue XI[oH
ww gz'0=93pa3 [9s14D
[TLIp 1S1M) 909 = UOTIORIJ JWN[OA 1qQL]
OPI1qIed pojeod-NIVIL AAd 'C  SSOUNOIY) WU {7 Sey 3Oels Yory
oSET =9[3ue JuIog s [06/0/Sy — /S¥]
07 =29[3ue XI]oH Jo 9ouanbas 3unyorlg
11 0) JD ‘d¥dD 03 LL—oduanbos Sumny wur 1170 =293pa [os1y) Qeutre] 4J4D ¥16/00€L
uru/w 09 ‘G ‘0¢ ‘ST =poeds Sumny  [[LIP ISIM] 9PIGIEDd PAJEOSU() | pue £o[[e AF[VILL po[eauue
[6] AW GT°0 “T1°0 ‘60°0 ‘90°0 ‘€0°0 =4 ‘arel paog Wit 679 = Iojowel(q AVIVILL/dIID
Ioyny JUSWIUOITAUS PUR SIdjoweIed SurLI suoneoyroads 1007, suoneoyroads aoardsop

(ponunuoo) | sjqey

pringer

AQs

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology

ura/ur Og| o3

dn yoear Aew 1 ‘suontod [y pue J¥AD 2y} J0J o[y ‘urw/wr ()¢ st paads Sunno ay) IoKe[ 1T, Y} 104

-0¢ =9r3ue X1
(uS1sop jutod a3e1s-0M1)
5081 pue ,Oz1 =9[3ue Jurog
pareod
puowerp gAD wr 9-¢ ¢
-0€ =9[3ue X1]oH
-0t T =9[3ue jurog
PaIeod 1A AAd wr 60 [
ww §¢-g =Jajewelq

wr g—g =I19)oweIp 19qy J[3UIg
9%9G = UOT)OBIJ QWIN[OA

[60/0S¥/606/0SE1/60/5S1] — Uon
-BJULLIO

ssowyoIy)

A1d [enpratpur unu-gg-Q €

s yoea ‘sgardoxd (N g

Jo pasodwod sem J1D YL
youls

[8L] Qjel MOpJ urw/[ GT—Iue[00) [HP DM PAINP-UIM],  [S9LI-0SOLIV/dIAD/AVIVILL
000%-9T 2qnT-NOoY ST Jue[00d “(Y/[ 1) MO JUR[00d ‘KIp—AT9ens Fur[00)
Ut/ ()’ G6 UTwl/W 9'9G paads Sumny NIDIVIL—Buneo)
. . . 1098J-9 (7] =9[Sue Julod
AQL/WIW 9T°() A1/ €00 el pa”yq 319 [[HP 0D/DM I1S9L
[LL] v dd4D wur G = Iojeuwrel(g -0T0L wnuiwnye pue Jy4>D
wrl ¢'7 = sSauyoIy) Suneo
611 TLSY (urw/wur) er pagg 12q0d N.WMﬁ ccmﬂvw_.nwmo m.wo @U
00¥1 00sy (urwyaor) paads Sumn) JO S[[HIp 3PIQIEd PAIR0I-LD  (9SVISE) A b/ TV9LL WnIueIn
[z1] L dd4D ww g=19jewelq  pue JIZIA [eLejew djsodwo)
K1 “(g/Tux 0O 1) SUI00I-ISTW-I3)B A\ = poyiowl Jumn) 9 = (Ww) I)oWeIp
881 ‘"6 = (urwyw) peads umn) S[[1IP 9PIGIED PAIUIWD W "6 = SSouyoIy) I,
[9L] 7°0 ‘T°0=(Ad1/wwn) 9181 pao  Pajeod NIVLL pue ISIL/IDIVIL wu ¢ = SSauNdIY) Y40
oOPI=9[Bueulod  WW §7'9=SSAWPIYI AP[VILL
-0€ =9[Sue XI[oY 9,09 = UOT}ORIJ QWIN[OA JOqL]
edIA 9°0 Jo aanssaid Jre passardwod je ‘y/[u 1 =9)el MO} JUB[00D) ww 9 = J9joWel(] ww ()9°'9 = ssouyory) JYAD
09 PUE ‘G 0¢ ‘T = (urw/w) paads Sumny 31q [[1Ip pajeod-puowrelp (€0-9ZA-A¥4) paseq-Axodd
[sL] 001°0 PU® ‘G200 ‘0S0°0 ‘STO'0 = (AdI/wIur) 91T PIO] puE 31q [[LP PAJROO-NIVLL Ue yia [oued (00LL) d¥4D UL
s %G
0/0S¥ = /506/,St)] = 20ouanbag
.01 =9[3ue Jurog 9,69 = UOTIOBIJ QWINJOA
-,0€ =9[3ue X1]oH 19qy ‘ursar Axoda 1osowrIay)
ww G¢'9 = Ijowel(] 0S8X PuUE sI1oqy uoqred
1L ddD ‘¥ < LL=2duanbes Surf[iq sdrp 0081 AN d¥AD TeKemnur
90°0 ‘S¥0°0 ‘€0°0 ‘S10"0 = (Ad1/WIUT) PO Sumno omy yaMm S[[LP DM W 8°9 = SSaWdIY} AY[VILL
[¥L] 69 ‘06 ‘S¢ ‘07 = (urwyw) paad§  PSYEOI-PUOWEIP PUE PIJBOOU() W 91°6 =SSO} JYAD
oyny JUSUIUOIIAUS PUE SIdJouWeIed SurfLi(] suoneoyroads [00], suoneoyroads 90a1dyIopm

(ponunuoo) | sjqey

pringer

As

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology

2.1 Ti-based coatings

Various Ti based coatings such as TiAIN, AITiN, TiN,
TiAlZrN, TiAlICrN, and TiAlCr are being tested as drill bit
coatings for stack-up drilling. TiN coating has good adhe-
sion property and effectively protects the bit from adhe-
sive and abrasive wear [79]. Additionally, TiN has a low
frictional coefficient compared to AlTiN and TiAIN coat-
ings which results in reduction of hole surface roughness
[80]. When cutting CFRP/A12024-T3 alloy, Kurt et al. and
Shunmugesh and Kavan mentioned that TiN-coated drill
bits produced workpiece roughness that was comparable
to that of TiAlN-coated drill bits [81, 82]. It is because
titanium has a unique affinity for aluminum, which causes
pressure and heat to specifically activate chemical and
physical diffusion processes near the cutting edges. As a
result, aluminum chips adhere to the coating, aluminizing
the drill's surface and creating friction between the drill bit
and the material, making drilled holes more uneven. Also,
good thermal stability of TiN helps to prevent built-up
edges and enhance heat transfer away from the cutting drill
bit. The TiAIN coating, which has better oxidation resist-
ance and hardness than TiN, is appropriate for dry machin-
ing applications [79, 83, 84]. Danisman et al. expressed
that PVD TiAIN coated drill has sensible performance in
terms of damage resistance, warmth corrosion resistance,
oxidation resistance, and chemical stability when com-
pared to TiN and TiAIN hard coatings [85]. Puneeth and
Smitha had demonstrated that, compared to TiN-coated
HSS and untreated HSS twist drill bits, TiAIN-coated
HSS twist drill bits had a longer tool life [86]. Prajapati
et al. compared TiAIN, TiN, and TiAIN + CrN coatings
and found that, in addition to adherence of thin coating
to substrate, TiIAIN + CrN coating has good mechanical
properties [87]. Furthermore, Giasin et al. mentioned that
AITiN/TiAIN coating with a microlayer structure is prefer-
able for applications involving materials with a hardness
above 45 HRC [56].

When considering monolayer and multilayer coatings,
TiN monolayer coating outperformed TiN-surface mul-
tilayer coating and TiCN coating films when evaluating
thrust force and torque [20, 88]. The cross-section view of
nc-CrAlN/a-Si;N, (Tripple Alwin) multilayer nano-coat-
ing is shown in Fig. 2 as an example of multilayer coating.
These are nanocrystalline forms of coatings composed of
very hard nanocrystalline crystals that are 10 nm in size
and produce high hardness. The machining performance
of TiAIN/TiAIZrN multilayer coatings has improved due
to its wear behavior, similar to the TiAlZrN monolayer
with comparable mechanical properties, despite a reduced
bilayer period [89].
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Fig.2 Cross-section view of nc-CrAlIN/a-SizN, (Tripple Alwin)
nano-coating [70]

2.2 Diamond coating

Cemented tungsten carbide is widely utilized as drill bit
material for CFRP/metal stack drilling; however, it exhibits
quick wear in machining it, demanding research into the
substrate and coating of carbide drill bits [90-93]. It was
found by a few researchers that diamond-coated low-Co
added carbide drill bit has shown to be the most effective
drill bit material for stack-up machining [94-96]. To reduce
drill bit wear and extend drill bit life, many firms also apply
diamond coatings [62]. Drill bits have been covered in dia-
mond coatings of various microstructures and thicknesses
because they offer great qualities like high hardness, high
thermal conductivity, low friction coefficients, high wear
resistance, and chemical stability [64, 95-104]. To prevent
excessive drill bit wear under high-speed machining and
for cutting hard materials like CFRP, diamond-coated drill
bits are extremely essential. In CVD diamond coating pro-
cedure, which employs gaseous CH, with a lot of carbon
[62], a coating of diamond will be deposited that is several
microns thick on the surface of tungsten carbide (WC). In
this method, Co is removed from the WC drill bit surface by
a pre-treatment procedure that strengthens the adherence of
the diamond covering. The CH, gas is then heated by a hot
filament to a temperature of between 700 and 1000 °C and
deposited on the drill's surface. Compared to polycrystalline
diamond (PCD), CVD diamond is more robust and harder
[62].

The drill bit performance can be tailored by taking into
account the qualities of the coating layer and the diamond
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grain size. While microcrystalline diamond (MCD) coat-
ings offer high adhesion and wear resistance, nanocrystal-
line diamond (NCD) coatings’ hardness is comparatively
low because of the development of non-diamond phases,
such as sp2 graphitic carbon [105]. Nevertheless, the lubri-
cating effect of graphitic phases can lower the machining
resistance. Additionally, grain refining can be used to reduce
workpiece surface roughness [106-109]. Dual- and multi-
layer diamond coatings have been created that combine the
benefits of MCD and NCD coatings thanks to advancements
in the fabrication of monolayer drill bit coatings of MCD
or NCD [101, 106, 107, 110-117]. When compared with
single-layer coated drill bits, dual and multilayer coated drill
bits display exceptional machining performance because of
the wear resistance and adhesion given by MCD near to the
substrate and the lubrication effect from the action of NCD
on the coating surface [105]. However, dual- and multilayer
diamond coatings are limited in real-world applications
because of the variation in residual stress between the layers
and the loss of adhesion caused by the high graphitic carbon
content at the MCD-NCD interface layer contact. Research
was done on gradient diamond coatings, in which the grain
size continuously declines from MCD of the substrate inter-
face to NCD of the coating surface to address these prob-
lems. The adherence of a coating with such a microstructural
transition may be superior to layers of MCD and NCD that
alternate [105].

2.3 Diamond-like carbon coating

Carbon atoms exhibit three primary hybridized states: graph-
ite, diamond, and diamond-like carbon (DLC). Graphite is
characterized by 100% sp2 hybridization, while diamond is
categorized as 100% sp3 hybridization. Graphite possesses
a hexagonal plane construction with strong covalent in-plane
bonds and weak Van der Waals out-of-plane bonds, result-
ing in a low coefficient of friction (COF). Contradictorily,
diamond features a tetrahedral structure in which each atom
is bonded with three others covalently, resulting in electrical
insulation, highest natural hardness, and exceptional thermal
conductivity. DLC exhibits a hybrid structure of sp2 and sp3
carbon atoms, and its properties depend on the ratio of these
hybridizations [118]. The term diamond-like carbon (DLC)
was first introduced by Aisenberg and Chabot [119]. They
used the ion beam deposition method with carbon (C) and
argon (Ar) particles and a graphite electrode to create DLC
layers at room temperature. These films exhibited optical
transparency, wear resistance, and electrical conductivity,
with a somewhat crystalline structure reminiscent of dia-
mond lattices. Aisenberg and Chabot observed that the use
of DLC coatings enhanced the cutting performance of paper-
cutting blades and reduced frictional coefficients [120].

Four different DLC coatings such as hydrogen-free amor-
phous carbon (a-C), hydrogen-free tetrahedral amorphous
carbon (ta-C), hydrogenated amorphous carbon (a-C:H),
and hydrogenated tetrahedral amorphous carbon (ta-C:H)
are being used in industrial applications these days. They
typically have great wear resistance and little friction. On
the other hand, based on the sp2/sp3 hybridization ratio
and microstructure of DLC coatings, different tribological
behaviors might be observed in different friction circum-
stances [121-124]. a-C:H coatings deliver ultra-low friction
in vacuum or inert environments [125, 126], whereas ta-C
coatings offer high wear resistance and ultra-low friction in
the presence of hydrogen, oxygen, or water molecules [127,
128]. Under oil-based boundary lubrication, the wear was
substantially higher in the ta-C/steel system in comparison
with the a-C:H/steel system [129]. ta-C possesses several
desirable properties such as low COF, excellent protection
against adhesive wear, and tribo-oxidation that make it suit-
able for stack-up drilling applications. Its high-stress endur-
ance is improved by this feature, even in dry and poorly
lubricated operating environments. ta-C's high hardness pro-
vides exceptional resistance to wear from abrasives. Its inert
surface chemistry guarantees seamless functioning, mini-
mizes sticking, and gets rid of deposit-related demolding
problems [130]. Moreover, ta-C exhibits improved corrosion
resistance and optical transparency [131]. Furthermore, a
2-pm-thick ta-C coating significantly increased the resist-
ance of stainless steel to abrasive wear, extending its lifetime
to 85 years from 1 week [132]. These enhanced qualities
result in reduced wear on highly stressed surfaces, extended
component service life, and increased manufacturing process
productivity.

Researchers have explored the effects of alloying
DLC with transition metals such as Ti [133-135] and Cr
[118, 135]. DLC is inherently brittle, and the formation
of nanoscale carbide inclusions is induced by alloying it
with stable metals that generate carbides, increasing the
material's hardness [132]. Figure 3a shows a PVD coat-
ing set up of ta-C coating with alloying element in the
coating machine. The PVD coating method is capable of
producing highly pure and high-performance coatings
because it transfers the coating material at the atomic or
molecular level. In Fig. 3b, the coating layer referred to
ta-C, seed layer referred to Ti layer, and substrate mate-
rial is the tool material. Alloying with group IIB, IIIB,
and IVB transition elements is often employed to improve
the mechanical characteristics of ta-C films by improv-
ing the bond strength between the substrate and ta-C
[136]. This approach can reduce stress on the film and
promote good adhesion with intermediate layers [137].
Few studies have found that ta-C coatings under varied
loads ranging from 10 to 70 mN have a hardness range
of 20 to 29.1 GPa [136, 138, 139] and ta-C + Ti coating
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Fig.3 (a) Drill bit setup for
PVD coating process. (b) SEM
image after applying coating
[143]
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at lower critical load (10 mN) have a hardness range of
16.8-28.1 GPa [140, 141]. ta-C+ Cr coating’s hardness
was measured by Fiaschi et al. to be between 2.5 and 3.5
GPa at 100 mN load, and the reason for this low value is
the low amount of (around 50%) sp* atoms [118]. Zhang
et al. found that ta-C + Ti coatings exhibited adhesive
strength values in the range of 359-381 mN [141]. When
considering the coefficient of friction of ta-C coatings,
Konca et al. obtained it between 0.07 and 0.20 in ambient
air for tungsten molybdenum high-speed steel tools (M2
tool steel) coated with 2.2 +0.2 pm ta-C against Al and Ti
counterparts [142]. Fiaschi et al. applied 1-1.5-pm-thick
ta-C + Cr coating on pure iron and AISI 304 stainless steel
substrates and obtained a COF of 0.2-0.5 and 0.17-0.25,
respectively [118]. Guo et al. obtained a COF of 0.07 for
Tiyq-ta-C coating with the thickness of 520 +20 nm [140]
and Zhang et al. obtained a COF of 0.14-0.22 for taC + Ti
with 100Cr6 steel counterpart [141]. Based on these find-
ings regarding hardness, bond strength, and COF, it can be
decided that the addition of seed layer/alloying element to
DLC can further improve the drilling quality.

3 Influence of tool coating on performance
indicators of stack material drilling

3.1 Impact of tool coating on drill bit wear

One of the crucial aspects in drilling processes is drill bit
wear, which has a direct effect on drill bit life, hole surface
quality, and production costs. When cutting CFRP/Ti or
CFRP/Al stacks, drill-bit wear happens as the consequence
of rubbing of the cutting edge against the tough carbon fibers
and the attrition, abrasion, and adhesion brought on by the
aluminum or titanium alloy [74]. Because of the abrasive
character of the reinforcing carbon fibers in CFRP panels,
abrasion acts as the major wear method for drill bit edges,
leading to cutting-edge rounding or edge dulling. On the
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other hand, titanium alloys cause rapid drill bit wear growth
with serious diffusion, crater wear, adhesion, as well as cata-
strophic failures like fracture or edge chipping because of
their low thermal conductivity leading to elevated cutting
temperatures and inherent high strength sustained at higher
temperatures [74].

D’Orazio et al. mentioned that abrasion, edge rounding,
and localized chipping at the cutting edge are the primary
wear modes when using a drill bit coated in DLC (Fig. 4),
whereas abrasion and aluminum particle adhesion on the
rake surface are the main wear mechanisms when using a
drill bit coated in nanocomposite TiAIN (Fig. 5) while drill-
ing CFRP/AL stack [63]. The SEM images of the rake and
flank faces of the DLC-coated tool after drilling 170 holes
are displayed in Fig. 4. As seen in Fig. 4a—c, it is evident that
chipping is occurring, mostly in the vicinity of the cutting
edge. This is due to an excess of mechanical stresses brought
on by the high cutting speed in that area. Figure 4c and d
depicts flank wear and edge rounding. Figure 5c shows the
adhesion of AA7075 particles (diameter lower than 50 um)
observed on the rake face, far from cutting edge, and Fig. 5d
shows the fracture of the TiAIN coating in the area surround-
ing Al particles. According to Montoya et al., abrasion was
the major wear type on the uncoated drill bit [64]. The cor-
ner, chisel edge, primary, and secondary cutting edges exhib-
ited abrasion. TiAICrN and AlTiSiN-G coated drills showed
abrasion, coating failure, and adhesion wear, with aluminum
forming a build-up edge (BUE) on the failed coating [64].
The rough surface from grinding operations, not fully cov-
ered by a 4-um coating, caused aluminum to adhere to the
rake face. Both TiAICrN and AlTiSiN-G coatings retained
the same surface profile as uncoated drills due to similar
material adhesion. In contrast, a thicker 6-um diamond coat-
ing provided a smooth surface, only experiencing abrasion
and minimal aluminum adhesion wear [64]. Fujiwara et al.
found that TiAlICr/TiSi coatings offered superior wear resist-
ance and reduced chip adherence compared to TiAIN and
TiSiN when drilling CFRP/Ti6A14V stacks [144].
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Fig.4 SEM images of the DLC
coated drill after a number of
holes equal to 170: (a) flank
face showing edge chipping,
(b) chipped zone from the rake
face, (c) chipped zone from the
flank face, and (d) flank wear
and edge rounding [63]

Cutting edge

Flank face

(a)

Chipped zone

AccV  Spot Magn WD
260KV 6.0 200x 172 DLC

(c)

Contradictorily, when drilling CFRP/AI12024 stacks,
Zitoune et al. observed that the primary wear mode is alu-
minum adhesion due to interlocking of alloy asperities on
the cutting edge under high contact pressure, without diffu-
sion or oxidation. SEM analysis showed that coated drills
have a superior surface finish compared to uncoated drills,
mainly due to the polishing process before PVD coating,
which enhances surface quality in both composite and alu-
minum panel. However, drill coatings do not prevent alu-
minum fusion on the cutting edges [70]. Shyha et al. con-
ducted experiments on Ti/CFRP/ALl stacks using a CVD
diamond-coated WC drill bit, choosing reverse sequence to
avoid the damage caused by sharp Ti chips while excavating.
They found that the most frequent failure mode was coating
peeling/flaking after a few holes. Other failure mechanisms
included chip clogging at the flutes, cutting lip breakage
due to BUE development, and serious corner rounding of
the cutting edge caused by abrasion from CFRP also lead to
coating failure for a notable extent [66].

Xu et al. noted that when drilling CFRP/Ti6Al4V in dry
conditions, TiAlN-coated drills retain their corner edge
topography better than diamond-coated drills, which suffer
from severe edge fracture. The TiAIN coating's low thermal
conductivity helps transfer heat to the chips, softening them
and reducing adhesive wear. Conversely, the diamond coat-
ing's high thermal conductivity causes heat to be conducted
through the drill body, raising the edge temperature [41].
When subjected to temperatures greater than 600-700 °C,

Rake face
3 i
g "" oy
AccV SpotM: WD |

lagn
200kVS50 100x 292DLC
£ .

(b)

Flank face

Flank face

AccW  Spot Nagn WD

200KV ED T24x 30.0 DLC

(d)

the diamond probably experiences oxidation and graphitiza-
tion, and brittle graphite is prone to breaking while undergo-
ing drilling [145, 146].

When it comes to flank wear, it is defined in ISO 8688:1
that the flank wear is measured in a parallel direction to the
wear facet and in a perpendicular direction to the initial cut-
ting edge, for example, from the initial cutting edge to the
wear facet limit which cuts the initial flank face. According
to D’Orazio et al., while drilling a CFRP/AA7075/CFRP
stack, the DLC-coated drill experiences significantly less
flank wear than the TiAIN-coated one as shown in Fig. 6
[63]. Flank wear on DLC-coated drill bits increases mono-
tonically with the number of holes drilled due to chipping
around the perimeter. However, the flank wear was consist-
ently lower than that of TiAIN-coated drill bits, with TiAIN
showing 2.25 times more wear than DLC after 170 holes,
as shown in Fig. 6 [63]. Montoya et al. mentioned that good
hole quality and lower thrust forces can be attained if the
flank wear is low. They further mentioned that AITiSiN-G
and TiAICrN coatings were ineffective since the flank wear
was extremely similar to that of the drill bit without a coat-
ing. However, the diamond coating was effective since the
flank wear measured with the uncoated drill was 50% more
than that measured with the diamond-coated drill [64]. Xu
et al. found that under dry conditions, TiAIN-coated drills
show a flank wear width of about 31 pym with titanium
particles adhering to the cutting edges, while diamond-
coated drills exhibit a flank wear width of around 23 um
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Fig.5 SEM images of the nanocomposite TiAIN coated drill after a number of holes equal to 170: (a) flank face, (b) flank wear, (c) edge round-
ing and rake face, and (d) fractured coating in the area surrounding Al particles stuck to the rake surface [63]

with significant edge chipping [41]. The diamond coating's
low COF and high thermal conductivity result in minimal
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Fig.6 Flank wear progression during drilling of CFRP/AA7075
stacks [63]
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titanium fusion on the edges. Under minimum quantity
lubrication (MQL), TiAlIN-coated drills have a reduced
flank wear width of 25 pm, whereas diamond-coated drills
experience significantly greater wear, with a maximum
flank wear width of 57 um due to titanium chip accumula-
tion and CFRP chip abrasion [41]. Kuo et al. reported that
when drilling AI/CFRP/Ti panels, uncoated drill bits have
a longer lifespan than PVD TiAIN/TiN-coated WC drills.
Uncoated drills generated 180 holes with a flank wear of no
more than 0.23 mm, while coated drills met the 0.30 mm
flank wear requirement after 90—148 holes. ANOVA calcula-
tions showed that both feed rate and drill bit coating signifi-
cantly influenced drill wear, with feed rate having a higher
partial correlation regression (PCR) at 78.4%. [65]. Tashiro
et al. found that the TiAlCr/TiSi-coated drill had a longer
lifespan than the TiAlN-coated drill since the TiAlCr/TiSi
coating had a 40% greater coating strength than the TiAIN
coating. Additionally, they found that tool life under water
mist drilling was shorter than that in dry drilling as the life
of drill was 90 holes in water-mist cooling and 140 holes in
the dry process. They believed that 0.2 mm of flank wear
represented the maximum drill bit life [76].
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Wang et al. said that the drill bit wear is a combination
of edge rounding wear and flank wear [71]. For the pur-
pose of comparison, Fig. 7 displays the LWQ in CFRP-only
and Ti-only while drilling the 40th hole, together with the
flank wear and edge rounding wear (assessed in LWQ) of
the coated drills in drilling of CFRP/Ti stack. The total flank
wear land from drilling CFRP and Ti individually is greater
than that from drilling the CFRP/Ti stack for both coated
drills. The edge rounding wear measurements from drill-
ing CFRP-only, combined with those from Ti-only, differ
by less than 10% from those obtained from the CFRP/Ti
stack. This small discrepancy is likely due to variations in
drill geometry. Thus, with LWQ applied, tool wear from
drilling the CFRP/Ti stack equals the sum of the wear from
drilling CFRP on the edge and Ti on the flank. They further
mentioned that, to the overall drill bit wear, the involvement
of the Ti layer is quite minimal in comparison to CFRP [71].
Montoya et al. mentioned that if the rate of wear on the rake
face accelerates faster than the wear on the flank face, it
would result in a higher local wear quantity (LWQ) but a
smaller flank wear measurement [64]. In this way the value
of flank wear is directly impacted by the rake face's wear.

Wang et al. mentioned that when drilling CFRP/Ti stack
using AITiN-coated, nanocomposite-coated, and uncoated
drills, the flank wear was 145, 135, and 104 pum, respectively,
and edge rounding wear was 1650, 1500, and 1450 pm?,
respectively [71]. This shows that the uncoated drills outper-
formed the coated carbide drills. They added that drilling a
CFRP/Ti stack prevented edge chipping because the carbon
fibers in the upper plate brush off any Ti fusion when drill-
ing the bottom plate as shown in Fig. 8b and d and increase
drill life. The Ti fusion left behind from drilling the Ti plate
was completely gone after drilling around 1 mm into the
top of the CFRP plate (Fig. 8b), and also the cutting edge is
rounded and smoothed (Fig. 8d) [71]. Figure 8a and c dis-
plays the drills with the Ti adhesion after drilling the bottom
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Ti plate of the CFRP/Ti stack. The hardness of carbon fiber,
roughly twice that of titanium, efficiently removes Ti fusion
from the drill's cutting edge according to abrasive wear
theory. Initially, rounding the edge while cutting the CFRP
layer prevents edge chipping, but as the drill becomes dull
over time, the likelihood of edge chipping decreases while Ti
fusion near the cutting edge increases. At this stage, remov-
ing Ti adhesion becomes crucial to minimize chipping [71].

Cao et al. noted that thrust force and temperature
increased as more holes were drilled in a CFRP/Ti stack
using a TiAlN-coated drill bit. This led to adhesive wear,
increased chip—drill contact area, and higher frictional wear.
Initially, edge rounding wear occurred due to abrasive car-
bon fibers. As cutting temperature rose, Ti chips chemically
adhered to the drill margin, which was eventually damaged
by abrasive carbon fibers and WC—Co grains, leading to the
removal of Ti fusion and TiAIN coating with increased spin-
dle speed and drilling [73].

Drill bit wear significantly impacts drill bit life, hole qual-
ity, and production costs in drilling processes. In cutting
CFRP/Ti or CFRP/Al stacks, wear occurs due to the tough
carbon fibers causing abrasion and the aluminum or titanium
alloys causing attrition, abrasion, and adhesion. Carbon fib-
ers mainly cause abrasion leading to edge rounding or dull-
ing, while titanium alloys cause rapid wear with diffusion,
crater wear, adhesion, and catastrophic failures due to high
cutting temperatures. Various coatings on drill bits, such
as DLC, TiAIN, TiAICrN, AlTiSiN-G, and diamond, affect
wear differently. DLC coatings exhibit abrasion, edge round-
ing, and localized chipping. TiAIN coatings show abrasion
and aluminum particle adhesion, while TiAlCt/TiSi coatings
perform better due to higher wear resistance and reduced
chip adherence. Uncoated drills often face severe abrasion,
while diamond-coated drills face coating failure but mini-
mal adhesion wear. Flank wear is a key indicator of drill bit
wear. Studies indicate that DLC coatings experience less
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Fig.7 Comparison of flank wear and edge rounding wear (LWQ) of the AITiN and nanocomposite coated drills at hole 40. (a) Flank wear and

(b) edge rounding wear
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flank wear than TiAIN, and diamond coatings effectively
reduce wear. However, under certain conditions like MQL,
diamond coatings show greater wear due to titanium chip
accumulation. Uncoated drills sometimes outperform coated
drills in certain conditions. The interaction between CFRP
and Ti, such as CFRP brushing off Ti fusion, significantly
affects wear and drill life. Overall, factors like feed rate, drill
bit coating, and cutting conditions (dry or MQL) play crucial
roles in determining drill bit wear and performance, and the
quantitative data of this section is summarized in Table 2.

3.2 Effect of tool coating on thrust force

Since it affects the quality of the drilled holes and the result-
ing drill bit wear, thrust force during drilling is one of the
primary parameters used to assess the machinability and
power consumption of various composite/metal stacks in
drilling operations [29, 64, 147-149]. Drill bit geometry,
cutting parameters, drill bit material, drill bit coating, work-
piece material, lubrication-cooling process etc. all have an
impact on thrust force [63].

The cutting force required to remove the material from
the workpiece is produced during the machining process
by the drill bit moving against the workpiece. Regardless
of the drill bits used, machining the Ti6Al4V panel often
involves substantially larger thrust force than machining
the CFRP panel [9, 41, 76]. This is attributable to the
different chip removal processes used by metallic and

composite materials. The titanium alloy chips are split
according to elastoplastic deformation and have serrated
and continuous shapes, which results in significantly larger
mechanical resistance and consequently larger force mag-
nitudes [150, 151]. In contrast, the CFRP panel is managed
by the brittle fracture chip removal mode, which produces
powdery chips and produce thrust forces of much lower
magnitudes. When drilling CFRP/Al/CFRP stacks, Zhong
et al. also agreed that, regardless of coated or uncoated
drill bit, the maximum thrust force in the drilling of CFRP
panel is smaller than that of Al panel [69]. According to
Shyha et al., drilling Ti/CFRP/AIl with an uncoated drill
bit showed the force required for Ti (2200 N) was about
three times higher than for CFRP and Al (700 N each).
With worn drill bits, thrust forces increased by 5, 7, and
16 times in Al, Ti, and CFRP, respectively. Further, feed
rate and cooling were crucial for CFRP and Al, while
drill coating significantly affected thrust force in Ti, with
a PCR of 23%. For the first hole drilled with an unworn
bit, a diamond-coated drill had higher thrust forces than
an uncoated drill in Ti and CFRP, but the reverse was
true for Al [66]. Wang et al. observed that the thrust force
recorded during drilling of Al (150-350N) was about two
times greater than that recorded during drilling of CFRP
(80—-180 N) when utilizing a diamond-coated drill to drill
CFRP/Al [67]. Montoya et al. obtained a thrust force value
of 40—100 N in CFRP panel and 120-180 N in Al panel
on the first hole regardless of coated or uncoated tools

Fig.8 The SEM pictures of the
drill cutting edges (a, c¢) before
and (b, d) after drilling into the
top CFRP layer when drilling

Cutting Edge

After brushing off by
carbon fibers of the top
CFRP layer

Ti-adhesion observed
after drilling the bottom
Ti layer

CFRP/Ti stack [71] Near the chisel edge

Near the margin
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[64]. D’Orazio et al. showed that the thrust force in Al
panel with either DLC-coated or TiAlN-coated drill var-
ies between 600 and 800 N, while in CFRP panel, it varies
between 150 and 300 N as shown in Fig. 9 [63]. It can
also be seen from Fig. 9 that, after 170 holes, the value of
thrust force in Al (F 57975) increases by around 8.7% when
using the DLC coated drill and by around 27.9% while
using the nanocomposite TiAIN coated tool. Similarly,
the value of thrust force in CFRP (Fggp) With the DLC-
coated drill increases by around 52% of the starting value,
compared to 57.3% with the TiAIN-coated tool. These dis-
parities can be explained by the fact that the DLC coated
tool experiences less severe tool wear than the TiAIN tool.
However, Brinksmeier et al. detected the opposite patterns
when using a bigger drill diameter (16 mm), CFRP panel
shows higher thrust forces than Al panel [152]. Kuo et al.,
when drilling a Ti/CFRP/AI stack panel, discovered that
the variance in thrust force was Ti> CFRP > Al, regard-
less of coating [65]. The variation in the cutting forces
produced by the drill and the various workpiece materials
can account for this disparity in forces [153]. Kuo et al.
obtained the thrust forces in Ti panel to be almost twofold
higher than that in CFRP and Al panels when drilling with
PVD DLC and CVD diamond-coated drill bits. The thrust
force magnitudes were in the order of Ti> Al> CFRP for
both the coatings irrespective of feed rate [78]. Tashiro
et al. observed that drilling CFRP/Ti6Al14V with TiAICr/
TiSi and TiAIN drill bits showed higher thrust force at the
CFRP entrance, which gradually decreased. In contrast,
the titanium alloy section experienced significant thrust
force at both the entrance and exit due to its resistance to
cutting. As the drill bit progressed through both layers, the
thrust force decreased [76]. Furthermore, TiAIN-coated
drills produced higher thrust forces in Ti panels and lower
in CFRP panels compared to TiAICr/TiSi-coated drills.
Mist cooling and TiAlCr/TiSi coating further reduced
thrust force in both panels [76].

Montoya et al. found that uncoated drills produced 30 to
50% lower average thrust force for the initial hole compared
to diamond-, TiAICrN-, and AlTiSiN-G-coated tools when
drilling CFRP/ALl stacks. This difference is due to the coating
thickness affecting cutting-edge sharpness, with uncoated
drills having a radius increase of 9 pm, compared to 11 pm
for TiAICtN and AlTiSiN-G, and 15 pm for diamond-coated
drills [64]. Kuo et al. observed that TiAIN/TiN-coated drills
increased thrust forces by 12-18% compared to uncoated
drills when drilling Ti/CFRP/AI panels. This increase is
due to the coating's larger cutting-edge radius of 33 pm ver-
sus 22 um for uncoated drills as shown in Fig. 10. ANOVA
results indicated that both feed rate and drill bit coating sig-
nificantly affected torque and thrust force in the Ti layer,
while only feed rate influenced these parameters in the Al
layer. For the CFRP layer, neither factor was significant [65].

Zhong et al. mentioned that the maximum thrust force
with a TiAIN-coated drill is less than that of an uncoated
drill because of the high hardness of the TiAIN coating
[69]. The existence of TiAIN coating reduces the tendency
of the drill to adhere with the aluminum chips when drill-
ing the aluminum stack, resulting in a lower thrust force
when using a TiAIN-coated drill bit [69]. Kuo et al. found
that while drilling at a feed rate of 0.08 mm/rev, CVD
diamond-coated drill, generated slightly lesser thrust
forces (Ti—524 N; CFRP—187 N; Al—243 N) compared
to using a DLC-coated drill (Ti—526 N; CFRP—222 N;
Al—265 N) [78]. The reduced thrust forces were due to
the drill's design, featuring a sharper 120° primary point
angle and a 180° secondary angle, which shortened the
cutting lips and lowered torque requirements. Wang et al.
found that while drilling CFRP/Ti stacks with AITiN-
coated, nanocomposite-coated, and uncoated drill bits, no
significant variation in thrust force was observed across 80
holes. However, the nanocomposite and AlTiN-coated drill
bits produced slightly higher thrust forces in the titanium
and CFRP panels [71]. According to Xu et al., the thrust
forces created by the TiAIN-coated drills (75-150 N in
CFRP panel and 300-550 N in Ti panel) under the MQL
condition are significantly lower than those obtained by
the diamond-coated drills (75-300 N in CFRP panel and
550-1200 N in Ti panel) in CFRP/Ti drilling as shown
in Fig. 11 [41]. This phenomenon is brought about by
the application of MQL, which raises the humidity in the
drilling region. Because the tribological characteristics
of diamond coatings is highly sensitive to humidity, the
COF of the coatings tends to be boosted when the humid-
ity rises, resulting in a larger cutting force [154]. On the
one hand, the brittle characteristics of the carbon/epoxy
system are retained in the composite polymer matrix due
to the cooling effects caused by the MQL oil supply. The
greater thrust forces that are achieved when applying the
MQL condition indicate that the CFRP phase does not
soften and, as a result, resists a greater mechanical resist-
ance to the chisel and drill cutting edges [41]. Figure 11
further shows that the thrust forces created by the TiAIN-
coated drills (60—150 N in CFRP panel and 280-550 N
in Ti panel) under dry condition are slightly higher than
those obtained by the diamond-coated drills (40-125 N
in CFRP panel and 230-550 N in Ti panel) [41]. Zitoune
et al. reported that when using an uncoated drill bit to drill
composites, the thrust forces obtained are 20-25% higher
than when using a coated drill bit [70]. This variation
increased to a value of 47% when drilling the aluminum
component, and which can be explained by the coated drill
bits' significant reduction in friction between the machined
surface and the drill's body as well as between the drill
bit's flutes and the chips [70]. However, according to Mon-
toya et al. the usual thrust force in the aluminum plate
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Fig.9 Evolution of thrust force with number of holes using TiAIN
and DLC-coated tools [63]

exhibits a nearly asymptotic tendency when the diamond
coating breaks [64]. The application of a diamond coating
reduced the force when drilling CFRP by 65% and when
drilling Al by 35% for the same cutting circumstances by
reducing drill bit wear. The material softening brought on
by high temperatures and the drill bit geometry's automatic
optimization could both account for this pattern [64].
When considering the hole number against thrust force,
Kuo et al. observed 56%, 52%, and 30% increase in thrust
force in the 10th hole compared to first hole when drilling
Ti, CFRP, and Al panels, respectively, with DLC-coated drill
bit [78]. The premature chipping and strong adherence of
workpiece on the cutting edge of the drill were identified
as the causes of the sudden increase in thrust force. Mon-
toya et al. mentioned that the thrust forces produced by both
uncoated and diamond-coated drills steadily rise with an
increase in the number of drilled holes in both CFRP and Al
components, primarily because of drill bit wear [64]. Tashiro

Fig. 10 Cutting edge radius of
the (a) uncoated and (b) TiAIN/

et al. also mentioned that when drilling CFRP/Ti6A14V
using TiAICr/TiSi and TiAlN-coated cemented carbide
drills, the thrust force rises with the number of holes [76].
Ghassemieh et al. found that drilling CFRP/Ti6Al4V with
C7 (nano-crystalline AITiN grains in Si;N,)-coated drills
saw thrust forces increase with the number of holes. Specifi-
cally, wear increased thrust forces by about 20% in Ti and
87% in CFRP [12].

Therefore, it can be decided that thrust force is influenced
by factors like drill bit geometry, cutting parameters, drill bit
material, workpiece material, and lubrication-cooling pro-
cesses, and the quantitative data of this section is summa-
rized in Table 2. Drilling Ti6Al4V panels typically requires
significantly higher thrust force compared to CFRP panels
due to differences in chip removal processes. Worn drill bits
further increase thrust forces significantly. Coatings on drill
bits affect thrust forces differently based on the workpiece
material. For example, TiAIN-coated drills tend to produce
lower thrust forces than uncoated drills due to their high
hardness and reduced adhesion with aluminum chips. How-
ever, some studies have reported higher thrust forces with
coated drills, attributed to cutting-edge sharpness. Uncoated
drills often generate lower thrust forces initially compared
to coated drills, as coatings can increase the cutting-edge
radius, reducing sharpness. Cooling conditions such as MQL
also impact thrust forces, particularly in composite drilling.
MQL can increase humidity in the drilling area, affecting the
tribological properties of coatings and subsequently the cut-
ting forces. Thrust forces generally increase with the number
of drilled holes, primarily due to drill bit wear. The rate of
increase varies among different materials and coatings. For
instance, diamond-coated drills show a significant reduction
in thrust forces for both CFRP and aluminum, attributed
to reduced wear. In contrast, the thrust forces produced by
TiAIN-coated drills tend to be higher, especially in titanium
panels. Drill bit coatings and cooling conditions are critical
in managing thrust forces, with specific coatings and lubri-
cation methods showing significant effects on thrust force
magnitudes.

TiN-coated drills [65]
\
R=~22um R=~33um
Uncoated WC drill Coated WC drill
T-type M-type
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Fig. 11 Comparison of the thrust forces under two cutting environments for the CFRP panel with (a) TiAlN-coated and (b) diamond-coated
drills and for the titanium phase with (¢) TiAIN-coated and (d) diamond-coated drills [41]

3.3 Influence of tool coating on torque

According to Xu and Mansori, drilling CFRP/Ti stacks
with a PVD TiAIN-coated drill resulted in slightly larger
torque magnitudes in CFRP panels than with an uncoated
drill, but significantly lower torque magnitudes in Ti panels.
They added that the application of coating has less impact
on torque than feed and speed [9]. Drilling CFRP/Ti stacks
using AITiN-coated, nanocomposite-coated, and uncoated
drill bits were compared by Wang et al. [71]. Uncoated drill
bit produced somewhat less torque in Ti panel than AITiN
and nanocomposite coated drill bits, despite there being no
appreciable variation in torque throughout the testing (80
holes). When drilling Ti/CFRP/Al panel, Kuo et al. reported
that TiAIN/TiN-coated drills generated up to 10% less
torque, which was consistent with the enhanced wear resist-
ance offered by the TiAIN/TiN coating at the corners [65].
According to Shyha et al., the lowest torque when drilling
Ti/CFRP/AI was recorded in CFRP followed by Al and Ti

with an uncoated drill [66]. This result can be attributed to
the propensity of both aluminum and titanium chips to attach
to drill edges and lips. Furthermore, as the test came to an
end, the torque levels in Al, Ti, and CFRP, respectively, rose
by a factor of 3, 4, and 5 with the used drill bits. According
to Kuo et al., when drilling Ti/CFRP/Al with PVD DLC-
coated and CVD diamond-coated drill, the lowest torque
is recorded in CFRP followed by Al and Ti irrespective of
feed rate [78]. Furthermore, after 10 holes, torque in the Ti,
CFRP, and Al sections rose by two to three times its start-
ing levels and then did not show any significant increment
until 70 holes. According to Tashiro et al., drilling CFRP/
Ti6Al4V with a drill bit coated in TiAlCr/TiSi and TiAIN
resulted in significantly less torque in CFRP part compared
to titanium alloy part [76]. The torque nearly doubled in size
in the 140th hole when the drill bit is advanced through the
hole. The friction between the titanium alloy and the drill
may have risen due to the drill's high wear at the 140th hole
[76]. Additionally, in dry and mist-cooled environment, drill
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with TiAIN coating produced less torque in titanium panel
than the drill with TiAICt/TiSi coating. Ghassemieh con-
curred that, between the first and last (21st) holes, the torque
of the CFRP portion increased by 50% while drilling CFRP/
Ti6Al4V using a C7-coated drill [12].

Xu et al. found that TiAIN-coated drills had lower torque
under MQL conditions compared to dry cutting, but dia-
mond-coated drills showed the same torque under both con-
ditions due to the diamond coating's low friction coefficient.
Under MQL at cutting speeds of 30 and 45 m/min, diamond-
coated drills generated higher torque on titanium alloy due
to severe chip congestion, which increased friction during
chip removal [75].

Therefore, it can be said that the presence of coatings on
drill bits, such as PVD TiAIN, AlTiN, and nanocomposite
coatings, can influence torque in drilling operations, but the
effect of coatings on torque appears to be less pronounced
than other factors like feed rate and speed. The quantita-
tive data of this section is summarized in Table 2. Torque
levels tend to increase as drill bits wear down. The accu-
mulation of swarf on drill edges and lips can contribute to
increased torque. The frictional interaction between drill
bits and workpiece plays a crucial role in torque generation.
The choice of coating can affect friction coefficients and
subsequently impact torque levels. Additionally, the use of
minimum quantity lubrication (MQL) can influence torque,
with diamond-coated drills exhibiting stable torque levels
due to their low friction coefficient.

3.4 Impact of tool coating on temperature

To understand drilling quality of CFRP/metal stacks, it is
crucial to recognize the thermal properties of CFRP resins.
CFRP's matrix resin, typically an amorphous polymer, tran-
sitions through glassy, elastic, and viscous states depend-
ing on temperature, with the glass-transition temperature
around 200 °C. At this point, epoxy resin deteriorates and
debonds from carbon fibers [67]. Wang et al. found that
drilling CFRP/ALI stacks with diamond-coated drills resulted
in a peak temperature of 232 °C in the CFRP layer, which
dropped to 115 °C in the Al layer. This is due to CFRP's low
heat conductivity causing heat buildup, while aluminum's
high thermal conductivity allows for rapid heat dissipation
[67].

According to Xu et al., while drilling CFRP/Ti with both
uncoated and diamond-coated drills [74], it is seen that
the diamond-coated drills generate comparatively lesser
cutting temperatures than the uncoated ones, as shown in
Fig. 12, demonstrating enhanced heat conduction at the
workpiece—tool interface [74]. This phenomenon can be
explained by the diamond coating's better thermal conduc-
tivity (16002000 W/mK), which is approximately 54—68
times higher than that of WC (29.2 W/mK) and allows for

@ Springer

rapid discharge of heat at the workpiece—tool interface. Its
lower COF also improves tribological interaction at the
tool—chip and workpiece—tool interface [74].

When Cao et al. used a TiAIN-coated drill bit to drill
CFRP/Ti stack, they found that as the cutting-edge worn
and degraded, the shearing plastic temperature of the Ti sig-
nificantly rose. Because of the frictional action between the
fracture edge and fibers, the cutting temperature during the
interface drilling stage exceeded the glass transition tem-
perature (7,) at the 20th hole, with friction heat and plastic
heat increased continuously as the number of drilled holes
increased [73].

Therefore, it can be said that exceeding glass-transition
temperature (7,,) can lead to resin deterioration and potential
debonding of carbon fibers from the matrix. To prevent such
issues, it is essential to carefully control the drilling process
to avoid surpassing T,. Drilling CFRP layers can generate
significant heat due to the material's poor heat conductiv-
ity. However, the excellent thermal conductivity of metal
allows for effective heat dissipation once the drilling process
transitions to metal panel. Diamond-coated drills generally
produce lower cutting temperatures compared to uncoated
drills. The diamond coating's lower friction coefficient and
higher thermal conductivity contribute to improved heat
management at the tool-to-workpiece interface.

4 Effect of tool coating on improving hole
quality parameters

The application of the coating boosts the drill bit's corro-
sion and oxidation resistance while extending its lifespan.
Researches have shown that the use of the coating greatly
affects the drilled hole dimensions of composite/metal
stacked panels in terms of geometry, linearity, delamina-
tion damage, and surface roughness [41, 68, 70, 74, 75,
155-157]. The drill bit coating is anticipated to have small
grains that can generate a sharp cutting edge [24, 70], good
toughness to prevent deformation [155], high hardness to
provide excellent wear resistance [68, 74], and reduction in
heat generation. Each of these characteristics is essential for
desired drill bit life, machinability, and hole quality [158].
The quantitative data of Sect. 4 is summarized in Table 3.

4.1 Delamination on composite panel

Delamination in the composite panel is often a particularly
severe failure condition in hybrid CFRP/metal stack drill-
ing because of its irreversible nature, which accounts for
a significant percentage of component rejections in actual
production [9]. Delamination is defined as the interlaminar
debonding across adjacent layers of a composite. Since it
adversely affects the fatigue life and assembly performance
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of composite laminates, it is thought to be the most serious
damage [160]. Delamination results from bending strains
between the material contact point and the drill bit [161].
Furthermore, under alternating loading situations, delami-
nation will spread further, eventually leading to the prema-
ture end of the life span of the composite components [41].
Peeling up and pushing down are the mechanisms by which
drilling-induced delamination happens at the edge of both
entrance and exit holes. Delamination of the CFRP layer
can occur even with a wear-free drill due to the drill flute
peeling off the CFRP top layer [63, 162] and AA7075 chip
evacuation through the hole [63, 64].

D’Orazio et al. found that the delamination factor (DF)
increased with the number of drilled holes. For the first hole
in a CFRP/A17075/CFRP stack, DLC-coated drills had a
DF value about 55.5% lower and TiAlN-coated drills about
50% lower than the last hole. A wear-free TiAIN-coated drill
had nearly double the DF of a DLC-coated drill. This dif-
ference is likely due to the DLC coating's high hardness,
which reduces thrust forces and enhances wear resistance
[63]. A reduction in thrust force can significantly contribute
to minimizing the DF, thereby enhancing the overall quality
of hole during drilling [69]. Conflictingly, the delamination
factor produced by diamond coated drill bit (0.17-0.3 in
MQL condition and 0.03-0.07 in dry condition) is more than
that produced by TiAIN-coated drill bit (0.1-0.15 in MQL
condition and 0.03-0.05 in dry condition), according to Xu
et al. [41]. This also demonstrates that the MQL environ-
ment promotes CFRP delamination. According to Montoya
et al., delamination does not occur all the way around the
hole entry, but rather in regions where a 45° angle is formed
by the direction of the chip movement (caused by the drill's
rotation) and the fiber orientation [64].

Zhong et al. found that the exit delamination produced by
an uncoated drill bit when drilling a CFRP/AI/CFRP stack
was approximately 4 to 8 times larger than that achieved
with a TiAIN-coated drill bit as shown in Fig. 13 [69]. This
significant difference is due to the increased hardness of the
TiAlN-coated drill bit. Additionally, Zhong et al. noted that
the DF at the hole exit was greater for the uncoated drill bit
compared to the entrance, and this variation was less pro-
nounced when using the TiAIN-coated drill bit. A study by
Bayraktar and Turgut contradicts these findings, indicating
that uncoated drills outperformed TiN and TiAlN-coated
HSS drills in terms of minimizing the DF [72]. Further-
more, in terms of delamination, the TiN and TiAIN-coated
drills performed similar to each other. This discrepancy is
explained by the coating's ability to dull the cutting edge,
making it more challenging for the drill to penetrate the
material [72]. Similarly, Xu and Mansori concurred that an
uncoated drill with a DF value of 1.15 produced slightly
better delamination quality in comparison to a TiAIN-coated
drill with a DF value of 1.206 when drilling CFRP/Ti [9].
Jebaratnam et al. found that drilling CFRP/AI17075-T6 with
uncoated WC tools consistently exceeded the industry
delamination factor (DF) limit of 1.206. In contrast, ta-C
coated tools drilled up to 90 holes with exit delamination
below this threshold, thanks to the coating's high hardness
and strong bond strength, which reduce delamination [163].
However, ta-C + Cr coated tools reached a DF below 1.206
for only 40 holes before surpassing the tolerance limit. The
lower hardness and bond strength of ta-C + Cr coating led
to faster wear and higher DF due to increased thrust force
[163].

Xu and Mansori found that drilling CFRP — Ti with
a TiAlN-coated drill bit resulted in more precise CFRP
hole shapes and less fiber/matrix damage compared to the
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Ti— CFRP order. The maximum delamination factor was
1.2 for CFRP — Ti and 1.3 for Ti— CFRP [9]. Because of
the underlying Ti alloy's support, which reduces workpiece
dynamics and laminate deflection, the exit CFRP delami-
nation is effectively controlled, preventing it from getting
worse as drill bit wear progresses [73, 74]. Meanwhile, the
continual presence of high-temperature Ti alloy chips caused
by the worn cutting edge close to the hole's edge causes ther-
mal-mechanical erosion of the CFRP layers at the interface
[73, 164, 165].

On the whole, delamination is a critical concern in the
drilling of hybrid FRP/metal stack-up panels, as it represents
a severe and often irreversible failure mode. The type of drill
bit coating plays a significant role in mitigating delamina-
tion. Diamond-like carbon (DLC) coatings and TiAIN coat-
ings have demonstrated their ability to reduce delamination,
primarily due to their high hardness, which can spread and
reduce thrust forces, thereby minimizing the delamination
factor. Some studies report that uncoated drills perform bet-
ter, and this discrepancy may be attributed to cutting-edge
sharpness. The sequence in which drilling occurs, whether
from CFRP to metal or vice versa, can also influence the
extent of delamination.

4.2 Burr formation on metal panel

The occurrence of the burr defect in the Ti panel poses a
significant challenge, particularly when compared to other
forms of surface damage in metallic materials. This issue
often necessitates additional steps such as disassembly,
deburring, and re-assembly of the stacks, as pointed out by
Xu et al. [9]. The deburring process alone can consume up
to 40% of the total cutting time and contribute to roughly
30% of the overall assembly cost if burrs are formed at the

exit of the drilled hole, as highlighted by Sui et al. [166].
Niknam et al. state that the ductility, hardness, and tensile
yield strength of the material are the primary mechanical
parameters that impact the burr's shape [167].

Hassan and Razali reported that drilling CFRP/ALI stacks
using a TiAIN-coated drill bit delivered superior drilling per-
formance in comparison to an uncoated drill bit, particularly
in terms of burr height, which was maintained below 80 pm,
thus obviating the need for a deburring process [168]. This
finding was corroborated by Kuo et al. when they drill Ti/
CFRP/ALl stack with a TiAIN/TiN-coated drill bit [65]. They
additionally noted that the maximum entrance burr height
produced by uncoated and TiAIN/TiN-coated drill bits was
0.2 and 0.15 mm, respectively, while the exit burr height
was 0.3 mm for the uncoated drill bit and 0.15 mm for the
TiAIN/TiN-coated drill bit at the end of the test. Hassan and
Razali found that burr height increased for both uncoated
and TiAIN-coated drills from the first to the sixtieth hole.
However, burr height for uncoated drills surged from 128
to 327 um after the 70th hole, while TiAlN-coated drills
maintained a maximum burr height of under 100 um until
the 81st hole. The TiAIN coating reduced aluminum adhe-
sion at the cutting edge, preventing build-up layers (BUL) or
build-up edges (BUE) [168]. Xu et al. found that uncoated
carbide drills produced higher drilling temperatures and
larger burrs when machining CFRP/Ti stacks due to poor
frictional contact and low thermal conductivity. This led to
reduced rigidity in the exit titanium layers. In contrast, dia-
mond-coated drills consistently generated lower burr heights
in the titanium layers due to their high wear resistance, better
heat dissipation, and lower mechanical loads, regardless of
the process parameters [74].

Xu et al. also made note of the impact of friction coef-
ficient and thermal conductivity in relation to the diamond
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Fig. 13 Delamination factor results for holes exit [69]
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and TiAIN coating when drilling CFRP/Ti stacks. According
to Fig. 14, the burr height produced by TiAIN and diamond
coated drill varies from 65 to 164 pym and 33—130 um under
dry condition. They found that the diamond coating, with
its lower friction coefficient and higher thermal conductiv-
ity, played a role in reducing the temperature growth during
drilling [75]. Furthermore, TiAIN-coated drills, with their
poor thermal conductivity, accumulated heat at the drill
bit-work interface, causing titanium expansion and burr for-
mation [75]. Under MQL conditions, vegetable oil reduced
drilling temperatures making titanium chips harder and more
brittle, leading to lower burr heights (40—75 um) and less
sensitivity to feed rate changes. In contrast, diamond-coated
drills produced higher burr heights (80—184 um) under MQL
due to titanium chip congestion, which increased local cut-
ting temperatures and friction, exacerbating burr formation.
[75]. Jebaratnam et al. mentioned that ta-C + Cr-coated tool
produced a minimal burr height of 96.4 um during drill-
ing of CFRP/A17075-T6 compared to uncoated and ta-C
coated tools. The findings indicate that the ta-C + Cr-coated
tool's lower coefficient of friction (COF) is what led to the
tool's reduced burr height development [163]. Reduced COF
causes the tool to rub against the workpiece surface less,
which lowers temperature generation and reduces ductility at
the hole edge, which in turn reduces the burr formation. The
tool coated with ta-C has the highest coefficient of friction
and generated the highest average burr height of 126.75 um
[163].

In their drilling experiments on a Ti/CFRP/ALI stack,
Shyha et al. measured entrance and exit burr heights. Their
findings indicated that the CVD diamond-coated drill bit
formed the best burr height results, followed by the uncoated
drill bit, while the C7-coated drill bit produced the largest
burr height among all [68]. They also noted that the entrance
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and exit burr heights of the top Ti panel did not show sig-
nificant differences regardless of the drill bits used. This is
because the burr height tends to be higher in more ductile
materials [169]. Furthermore, the entrance burr height in
Al panel was smaller than the exit burr height of that panel,
regardless of the drill bits. This phenomenon was explained
by the compaction of the CFRP layer above, which led to
lower entrance burr heights, and the unsupported condition
of the bottom Al panel, which resulted in higher exit burr
heights [68]. Xu et al. mentioned in their study on CFRP/
Ti6Al4V stacks that maximum temperatures were typically
found at the exit side of the titanium panel, leading to more
severe drilling-induced burrs at the exit side compared to
the entry side [74].

Xu and Mansori explored the influence of cutting
sequence on burr formation [9]. They observed that a TIAIN-
coated drill typically resulted in higher burr widths (320 pm)
compared to an uncoated drill (210 pm) when operating in
the CFRP — Ti cutting sequence, especially under high-
cutting-speed conditions. Additionally, they found that
Ti— CFRP drilling produced fewer defects when high feed
rates were applied. This difference was because of the sup-
portive role of the bottom CFRP panel, which increased the
stiffness of the exit Ti layer making it easier to shear the
bottom surface layers and contributed to reducing the exit
Ti burr defect. Xu et al. also agreed with it while drilling
from Ti— CFRP which normally resulted in far lesser burr
heights compared to the CFRP — Ti drilling order [74].

Considering all these things, burr formation is a signifi-
cant challenge in the drilling of hybrid CFRP/metal stacks,
often requiring additional post-processing steps and increas-
ing both machining time and assembly costs. Burr height
and formation are influenced by various factors, including
material properties, drill bit coatings, cutting conditions, and
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Fig. 14 The burr heights produced by the TiAIN-coated and diamond-coated drills at the fixed cutting speed of 30 m/min. (a) The dry cutting

condition. (b) The MQL condition [75]
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drilling sequences. Temperature distribution during drilling
can contribute to burr formation, with maximum tempera-
tures often observed at the exit side of the metallic phase,
leading to more severe exit burrs. Material properties such
as ductility, hardness, and tensile yield strength play a sig-
nificant role in determining the shape and height of burrs.
Coated drill bits, such as TiAIN and diamond-like carbon
(DLC), have been shown to reduce burr height compared
to uncoated drills. Coatings with higher hardness and bet-
ter thermal conductivity can contribute to minimized burr
formation. Drilling from metallic layer toward FRP pro-
duces better burr results due to the supportive role of the
underlying FRP layer. The choice of cutting environment,
such as minimum quantity lubrication (MQL), can affect
burr height. The application of appropriate cooling and
lubricating agents can reduce burr height by altering chip
characteristics. High thermal conductivity and low friction
coefficients, often associated with diamond coatings, can
help reduce burr height.

4.3 Hole wall roughness

According to Batzer et al., the material being drilled, the
machining conditions, and the type of drill used all have a
major influence on the hole surface roughness [170]. Fur-
thermore, the inhomogeneous properties of the composite
part in comparison to the metal piece make it tough to mini-
mize the hole surface roughness [171, 172].

According to Zitoune et al., the usage of nc-CrAlN/a-
Si;N, nano-coated drill bits resulted in an improved sur-
face quality on Al and CFRP holes [70]. They obtained a
roughness of 0.43-0.94 pm with an uncoated drill bit and
0.35-0.68 um with a nc-CrAIN/a-Si;N, nano-coated drill bit
at a constant speed of 2750 rpm. This difference is mostly
due to drill bit polishing, particularly prior to coating (PVD)
for increased nanocrystalline layer bonding [70]. Montoya
et al. observed that the roughness of hole walls in the initial
50 holes remained consistent for uncoated and diamond-
coated drill bits as shown in Fig. 15. Uncoated drills showed
increased hole roughness with more drilled holes, reaching
1.4 um for aluminum and 6.5 pm for CFRP. Diamond-coated
drills, however, maintained lower roughness, under 0.6 um
for aluminum and 2.8 um for CFRP. This disparity is due to
uncoated drills' wear and sharp edge deterioration, which
initially resulted in smoother holes but became less effec-
tive over time, leading to higher roughness [64]. Kuo et al.
corroborated this statement and added that flank wear does
not directly impact the surface roughness of metal panels,
whether they are aluminum (Al) or titanium (Ti) [65]. Addi-
tionally, Zitoune et al. obtained similar roughness values
ranging from 1.6 to 4.6 um when using nc-CrAlN/a-Si;N,
nano-coated drill bit, but observed higher roughness lev-
els between 3.2 and 6.9 pm with uncoated drill bits when

@ Springer

drilling CFRP panel of CFRP/Al stacks [70]. This discrep-
ancy in roughness is attributed to the non-uniform compo-
sition and layer-by-layer stacking arrangement inherent to
CFRP, which results in a larger standard deviation in hole
surface roughness compared to A17075-T6 panels [70]. This
high deviation is also due to the presence of projecting fib-
ers, fractures, and epoxy debris during drilling [173]. The
deterioration of the CFRP hole surface may also be due to
the scratches that occurred during the evacuation of chips
produced while drilling A17075-T6 panel [170, 174]. How-
ever, Shyha et al. have noted that the damage caused on
CFRP hole surfaces by Al chips during drill bit feed/retrac-
tion can be mitigated by wet cutting [68]. Achieving minimal
surface roughness in composites requires the dust generated
during drilling to be fine, as this leads to improved surface
roughness outcomes. Increased temperature in cutting zone
also causes CFRP roughness. As the temperature increases
during drilling, the bond between the fiber and matrix weak-
ens, resulting in interfacial debonding of the fiber and resin.
Consequently, the fiber is more easily separated from the
matrix, leaving non-integrated fibers on the machined sur-
face. This, in turn, contributes to an increase in hole surface
roughness [67]. This scenario is not concentrated throughout
the surface, but mostly at 135° between fiber alignment and
the direction of drill bit movement. The occurrence of pit-
ting phenomenon at the stacking sequence of 135° (—45°)
is attributed to the negative cutting direction angle. In this
context, instead of being cut, the uncut fibers are pulled out
[64, 175]. This phenomenon can be elucidated by consider-
ing that fibers oriented in the —45° direction tend to experi-
ence significant elastic bending rather than shearing due to
the pressure exerted by the drill cutting edge [176].

Shyha et al. when drilling Ti/CFRP/ALI found that the hole
surface roughness of the aluminum panel remained below
0.2 um for 310 holes, unaffected by drill wear or coating loss
when using C7 and CVD diamond-coated drills in wet con-
ditions. In contrast, the titanium panel's roughness increased
from 0.3 to 0.9 um over the same number of holes, while the
surface roughness of CFRP with uncoated drills rose to 5 pm
from 0.5 pm [68]. Chip redeposition on titanium increased
roughness due to material trapping and pressure-welding,
whereas aluminum, being less prone to adhesion and posi-
tioned at the bottom of the stack, showed minimal chip
adhesion. Surface roughness for CFRP remained at 3 um
for CVD diamond-coated, 9 um for C7-coated, and 4.5 um
for uncoated drills for the first 200 holes. Furthermore, the
surface quality deteriorated quickly under spray mist condi-
tions [68]. In a study by Ghassemieh, it was mentioned that
C7-coated drills achieved a surface roughness of less than
2 um in CFRP and less than 0.4 um in titanium panels for
all 15 holes under dry conditions [12].

When working with CFRP/AI/CFRP stacks, Zhong
et al. found that the surface roughness of holes machined
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Fig. 15 Roughness Ra for the (a) CFRP part and (b) Al part using (A) uncoated and (B) diamond coated drill bits [64]

by TiAIN coated drills was superior to those drilled with
uncoated drills [69]. This improvement is explained by the
fact that, in comparison to uncoated drills, coated drills cre-
ate less surface cavities on the CFRP hole walls. A similar
finding was corroborated by Xu and Mansori when drill-
ing CFRP/Ti6Al4V using TiAlN-coated drill bits [9]. The
TiAIN coating exhibited a high level of hardness, result-
ing in reduced thrust forces and enhanced drill durability,
ultimately contributing to a smoother hole surface finish
[69]. Mathavan et al. mentioned that the average hole sur-
face roughness of 100 holes drilled on CFRP panel while
drilling CFRP/AI7075-T6 stack by uncoated, ta-C-coated,
ta-C + Cr-coated, and ta-C + Ti-coated drills were 2.91, 2.4,
2.31, and 2.15 pm, respectively, which is below the indus-
trial accepted limit of 3.2 pm [135]. The low roughness com-
pared to uncoated tool is because of the lubrication effect of
the coatings. Reduced heat production due to high lubrica-
tion leads to reduced fiber matrix debonding and reduced
surface roughness in composite panels [135].

However, as indicated by Brinksmier and Janssen, the
use of coated drill bits does not seem to have a discern-
ible impact compared to uncoated drill bits on the damage
inflicted on CFRP due to the erosion phenomenon caused
by sharp chips interacting with the material [2]. Similarly,
Kuo et al. reported that drilling Ti/CFRP/AI with a TiAIN/
TiN-coated drill bit did not result in a discernible improve-
ment in hole surface roughness in comparison to an uncoated
WC drill bit [65]. In both cases, the surface roughness values
for the Ti, CFRP, and Al layers fell within the respective
ranges of 0.35-0.95 um, 0.53-1.4 um, and 0.11-0.5 um for
both types of drill bits. Moreover, the surface roughness of
the holes made in the aluminum section did not appear to
be affected by the application of coatings, such as TiAIN,
TiAIN/AIN, and MoS,, as demonstrated by Kalidas et al.
[177]. Mathavan et al. also determined that the average hole
surface roughness of holes drilled on aluminum alloy pan-
els using ta-C-, ta-C + Cr-, and ta-C + Ti-coated drills was

around 1.76 um, while holes drilled using uncoated drills
had an average of 1.43 um [135]. It not only shows the inef-
fectiveness of coating on the hole surface roughness while
drilling Al panel, but also, it produced a higher hole surface
roughness value which is above the industrially accepted
limit of 1.6 pm in Al panel.

The use of diamond-coated drills results in far better hole
surface characteristics with less damage caused by drilling.
This improvement is primarily attributable to the lower drill-
ing forces and temperatures generated by diamond-coated
drills, which effectively mitigate the mechanical and ther-
mal impacts during stack drilling. As Fig. 16a illustrates,
in the CFRP — Ti drilling order, very slight erosion dam-
age is seen on the CFRP hole surfaces because of the dia-
mond coating's improved performance, which lessens the
negative impacts of titanium chip ejection [74]. The badly
cut CFRP surfaces with cavities are mostly localized at
the —45° plies, as Fig. 16a indicates. Moreover, when drill-
ing in the opposite order (Ti — CFRP) as shown in Fig. 16b,
only small amounts of thermally induced damage are found
on the composite hole surfaces. This phenomenon may be
explained by the intrinsic qualities of the diamond coating,
such as its high heat conductivity, low friction coefficient,
and high hardness, which all work together to limit drill bit
wear and lessen the mechanical and thermal consequences
of the chip removal process [74]. Figure 16b further shows
that the extremely heated drill edges that come into contact
with the composite during drilling are the cause of the signs
of pyrolysis, fuzzing, degradation, and matrix softening that
are found within the drilled composite holes.

In general, coated drill bits, such as nc-CrAIN/a-SizN,
nano-coated, ta-C-coated, or diamond-coated drills, yield
superior surface quality compared to uncoated drills. Coat-
ings contribute to reduced wear and better hole wall finish.
Diamond-coated drills exhibit low friction coefficient, high
hardness, and high thermal conductivity to improve the sur-
face finish. The sequence in which the stack is drilled can
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impact surface roughness. Drilling from metallic to compos-
ite materials tends to cause more damage to the composite
hole surfaces due to chip evacuation issues. Efficient evacu-
ation of chips, especially in metallic-to-composite drill-
ing sequences, plays a crucial role in minimizing surface
damage. Inadequate chip removal can lead to abrasion and
increased surface roughness. Elevated temperatures gener-
ated during drilling, particularly in composite materials, can
lead to thermal degradation, microcracks, and matrix soften-
ing, contributing to increased roughness. It is worth noting
that the application of cooling can have a significant impact
on surface quality.

4.4 Hole diameter error

The main challenge encountered when drilling stack-up
materials is the varying diameters between the materials
[178]. Since various materials have varying moduli of elas-
ticity, which can cause different kinds of elastic deformation,
it is challenging to maintain consistent diameters between
the stacked materials [179]. Misalignment between hole

Poorly cut surl'ces with
quantities of cavities

and drill bit sizes can necessitate costly repairs and affect
assembly quality, with oversized holes risking looseness and
undersized holes causing component failure due to concen-
trated pressures [180].

When drilling CFRP/AA7075/CFRP stack, D’Orazio
et al. mentioned that, though both DLC- and TiAIN-coated
drills showed increasing variation in diameter between entry
and exit holes, TiAIN-coated drills had the trend with more
pronounced difference as shown in Fig. 17 [63]. They fur-
ther mentioned that the hole diameter decreased through
the layers, with the exit diameter being significantly smaller
than the entry diameter and the size of AA7075 hole diam-
eter was between the CFRP layers. Aluminum chips' rota-
tion causes greater entry diameter due to abrasion, while
improved drill guiding reduces exit diameter [63]. Drilling
temperature which is lower in the bottom CFRP layer due to
better heat transfer and different elastic moduli of AA7075
(70.6 GPa) and CFRP (53 GPa) also contributed to the
diameter discrepancy [63]. A similar incident of decrease
in hole diameter with depth was reported by Kuo et al. while
drilling Ti6Al4V/CFRP/AA7050 stack panel with uncoated

Bending-induced fiber
fracture leading to the
fiber pullouts and
interlaminar cracking

Micro cracking

Signs of thermal
degradation of the
matrix

Fig. 16 SEM morphologies of the drilled composite hole walls when using the diamond-coated drill under the (a) CFRP—Ti sequence
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65 m/min and f=0.06 mm/rev) and (b) Ti — CFRP sequence (Vc=

65 m/min and f=0.06 mm/rev) [74]
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and TiAIN/TiN-coated WC twist drills [65]. Contradictorily,
Shyha et al. discovered that while drilling a Ti/CFRP/Al
stack using diamond- and C7-coated drill bits under wet con-
ditions, the diameter of the entry Ti panel and exit Al panel
are bigger than that of the mid CFRP layer [68]. This situ-
ation might be caused by the fact that fibers tend to shrink
when exposed to moist conditions. Conflictingly, Pardo
et al. discovered that when cutting a CFRP/ALI stack panel
with AlTiCrN-coated drill bit, the interface diameters of the
aluminum and CFRP holes were consistently bigger than
the entry CFRP and exit Al holes [77]. Additionally, it was
discovered that the interface diameters of the holes made
in aluminum were consistently marginally larger than those
made in CFRP. There are two potential causes for this. First
off, the two materials' distinct elastic moduli result in vary-
ing degrees of elastic recovery [2, 68, 181]. Second, when
the tool contacts with the lower Al layer, there's a chance of
tool skidding, which causes the aluminum to have a little
bigger entry diameter and the CFRP to have a somewhat
larger exit diameter [77]. Conflictingly, Xu et al. pointed
out that while using both TiAIN- and diamond-coated drill
bits, the exit diameters of the CFRP panel are significantly
bigger than those recorded in the entrance and middle areas
[75]. Under the MQL condition, the disparity between the
entrance and exit CFRP hole diameters is diminished and
both diameters approach the nominal hole [75].

According to Pardo et al. and Perez et al., the sizes of
the holes drilled in Al7075-T6 are usually greater than
those drilled in CFRP because of the thermal expansion
that occurs during the drilling process, irrespective of
whether coated or uncoated drill bits are used [77, 182]. It
is because, when drilling the A17075-T6 panel, aluminum
chips have a propensity to jam at the flute, increasing drilling
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temperature. As a result, the large diameter in aluminum
panel is more likely to occur in a dry environment [77, 183].
Dry cutting of Ti6Al4V panel also encourages oversized
hole diameters than the nominal one because of the titanium
alloy's thermal expansion. The MQL condition creates holes
with diameters, which are smaller than the nominal diameter.
It is because, when drilling composite plates under cooling,
the fibers have a tendency to contract, resulting in a smaller
hole in the composite plate than the corresponding hole in
the metal section [75]. However, there are some instances
where the diameter of the hole in CFRP is bigger than that
in Al7075-T6 either with coated or uncoated drill bits [64,
67, 184]. Zitoune et al. speculate that this may be because of
more drill bit stability while drilling through the bottom Al
layer [70]. Additionally, it was noticed by Montoya et al. that
continuous chip production during the drilling of metal can
lead to the chip twisting along the drill body and obstruct the
chip evacuation [64]. This causes hot, sharp chips to form
in the hole that cannot be removed smoothly, increasing the
size of the CFRP holes and lowering the quality of the sur-
face of the CFRP holes [152, 185].

According to Montoya et al., the relationship between the
number of holes and the dimension of the holes is mostly
steady while drilling CFRP/AI stacks with a drill bit of
6-mm diameter [64]. This stability is observed in the range
of 5.965 to 5.98 mm for uncoated and diamond-coated drill
bits, as well as in the range of 5.96 to 5.995 mm for TiAl-
CrN-coated drill bits and 5.955 to 5.98 mm for AITiSiN-
G-coated drill bits. Tashiro et al. noted that when drilling
CFRP/Ti panels using TiAIN and TiAlCr/TiSi-coated drills,
the hole size remained stable in the Ti panel but increased
in the CFRP panel as the number of holes increased [76]. In
contrast, Shyha et al. discovered that, regardless of whether
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Fig. 17 Evolution of hole diameter with number of holes using (a) DLC-coated drill and (b) TiAIN-coated drill [63]
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coated or uncoated drill bit is used, the hole diameter
decreased with an increase in the number of holes when
performing wet cutting of Ti/CFRP/ALI stacks [68]. This
pattern is attributed to the material loss caused by drill bit
wear evolution as the number of holes increases. They also
stated that the first hole made by uncoated drill bit was less
than the nominal diameter, whereas the first hole made by
diamond- and C7-coated drill was larger than the nominal
diameter. According to D’Orazio et al., the DLC-coated drill
bit created undersized holes in both CFRP and AA7075 pan-
els, but TiAIN-coated drill bit initially created large holes,
which eventually reduced to generate undersized holes after
midway in both CFRP and AA7075 panels due to drill bit
wear [63]. Conversely, Wang et al. observed that the holes
created by the diamond-coated cemented carbide drill bit in
both CFRP and A17075-T651 were large throughout the trial
[67]. Similarly, Tashiro et al. discovered that holes drilled
with both TiAlCr/TiSi- and TiAlN-coated drills are large in
both CFRP and Ti panels [76]. They added that, in CFRP
panels, the deviation with TiAIN-coated drill is greater than
that with TiAlCr/TiSi-coated drill, but in Ti panels, the devi-
ation with TiAIN-coated drill is slightly lower than that with
TiAlCr/TiSi-coated drill. Additionally, the holes drilled in
Ti panels by both drills are smaller than those drilled in
CFRP panels [76]. Xu and Mansori found that hole sizes in
both CFRP and Ti panels were oversized (nominal diam-
eter=6.35 mm) in CFRP/Ti drilling, regardless of whether
uncoated or TiAIN coated drill bit is used [9]. The TiAIN-
coated drill bit performed better, with a CFRP diameter
variation of only 0.05 mm compared to 0.15 mm with the
uncoated drill bit. This is attributed to the TiAIN coating's
ability to maintain sharp cutting edges and resist wear. While
diameter variation in Ti panel holes were consistent for both
drill bits, the uncoated drill bit produced larger CFRP holes,
whereas the TiAIN-coated drill bit produced varying hole
sizes in the CFRP panel [9]. Pardo et al. also discovered
that while drilling CFRP/Al using TiAlCrN-coated drill bit,
all of the holes created were substantially larger than the
nominal diameter of the tool used (15 mm) [77]. Mathavan
et al. reported that the average stack-up diameter error for
holes drilled with ta-C + Ti, ta-C + Cr, ta-C, and uncoated
tools are 20.58, 16.21, 17.24, and 13.28 um, respectively.
The increased error in coated tools is due to the added diam-
eter from the coating and, specifically for ta-C + Ti, the high
chemical affinity and adhesive tendency of titanium, which
causes chip accumulation at the cutting edges. This issue is
exacerbated as the Ti dopant is exposed due to wear, increas-
ing the diameter error [135].

When considering the drilling progression, D’Orazio
et al. measured the diameter difference in dry conditions
after drilling the 170th hole, which approached a value of
roughly 32 um with the DLC-coated drill bit and around
58 um with the TiAIN-coated drill bit when drilling CFRP/
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Al7075/CFRP stack panels [63]. Montoya et al. showed that
uncoated and diamond-coated drill bits produced 9-um toler-
ance holes even at the 250th hole, but TiAICrN- and AlTi-
SiN-G-coated drill bits produced 18 um tolerance range at
the 75th hole when drilling CFRP/A17010 stack panels [64].
Shyha et al. mentioned that diamond-coated drill generated
the smallest diameter difference from start to finish, followed
by C7-coated and uncoated drill bits that caused the greatest
diameter difference while cutting Ti/CFRP/AI stack panels
[68]. Kuo et al. found that TiAIN/TiN-coated drill bits pro-
duced more accurate hole diameters with a maximum vari-
ation of 0.02 mm from the nominal size when drilling Ti/
CFRP/AL stacks, compared to uncoated drill bits (all up to
180 holes). This was due to a 33% reduction in wear at the
coated drill bits' outer edges. They noted that coating did not
affect hole diameter variation at low feed rates but did reduce
variations at high feed rates. The primary factor influencing
hole diameter in both CFRP and Ti layers was the drill bit
coating, with PCRs of 64.5 and 57.5%, respectively [65].
D’Orazio et al. used a third-degree polynomial regression
model to determine an inverse relationship between hole
diameter and drill bit wear [63].

On the whole, the type of drill bit coating used has a sig-
nificant impact on hole diameter control. Diamond-coated
and various TiAlIN-coated drill bits tend to produce more
consistent hole diameters compared to uncoated drill bits.
Coatings contribute to maintaining sharp cutting edges and
reducing wear, which in turn improves diameter accuracy.
Drill bit wear over the course of multiple holes can impact
hole diameter accuracy. As drill bits wear down, hole diam-
eters may deviate from the nominal size. Variations in drill-
ing temperatures can influence hole diameters, with some
materials expanding or contracting due to heat generated
during the drilling process. Thermal effects can cause com-
plex diameter changes, especially in composite materials.

4.5 Hole integrity errors

Hole circularity is the property of a surface where all of its
points are intersected by planes perpendicular to axes that
are equally spaced from those axes [186]. Circularity can be
determined using the geometric tolerance that indicates how
close a piece of a cylindrical part is to a true circle [187].
It is an important parameter for controlling the maximum
allowed circularity error of the circular part. Although the
number of researchers who study about circularity error
when drilling stack-up panel is very limited and it has not
received as much attention as surface integrity, the perfor-
mance of machined items is greatly affected by the circular-
ity of the drilled holes [188].

Kuo et al., when considering hole cylindricity, discovered
that uncoated drills caused a maximum cylindricity error
of 150 pm, whereas TiAIN/TiN-coated drill bits caused a
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maximum cylindricity error of 100 pm when drilling Ti/
CFRP/AL stack [65]. Shyha et al. discovered that the CVD
diamond-coated drill made better circularity at the end of
the cutting process (156th hole) than the uncoated drill bit,
whereas the C7-coated drill generated better circularity
at the beginning of the cutting procedure [68]. Kuo et al.
showed decreasing hole circularity with stack depth for Ti/
CFRP/Al panel, with average circularity errors in Ti, CFRP,
and Al layers ranging from 53 to 121 um, 33 to 109 um,
and 25 to 78 pum, respectively [65]. They found that drill bit
coating significantly impacted the Ti layer's hole diameter
at 5% PCR level in ANOVA, but no factors significantly
affected the out-of-roundness in the CFRP and Al layers.
The trilobed hole shapes in the Ti layer were likely caused
by drill’s helical wander due to longer chisel edges or defects
in drill geometry. According to Shyha et al., hole circular-
ity variations in Ti, CFRP, and Al layers were up to 78, 39,
and 53 pm, respectively, when drilling Ti/CFRP/AI under
wet conditions [68]. They discovered that as the testing
advanced, the circularity and cylindricity improved. Accord-
ing to Mathavan et al., the average circularity error values
were attained when cutting CFRP/A17075-T6 with uncoated,
ta-C-coated, ta-C + Cr-coated, and ta-C + Ti-coated drill bits
were 14.82, 16.16, 15.36, and 16.1 um, respectively, on alu-
minum alloy panel and 15.16, 15.48, 15.1, and 13.96 pum,
respectively, on CFRP panel [135]. The circularity was well
within the statistical limits and was not affected much by the
coating application in their case. According to Xu and Man-
sori, the circularity error produced by TiAIN-coated drill
bit (6—14 um) in Ti panel was greater than that produced by
uncoated drill bit (4-8 um) when drilling CFRP/Ti panel
in CFRP — Ti sequence [9]. The circularity error gener-
ated during Ti — CFRP drilling with TiAIN coated drill bit
was even greater (9-28 um). Also, the circularity error in
CFRP panel was greater than that in Ti panel irrespective
of the drill bit used [9]. Xu et al. found that average cylin-
dricity errors for holes in CFRP and titanium were higher
with TiAIN-coated drills than with diamond-coated drills.
Furthermore, MQL cooling reduced cylindricity errors in
CFRP by 16.11% for TiAIN and 15.08% for diamond coat-
ings. However, during titanium drilling, MQL increased
cylindricity errors by 28.03% for TiAIN and 106.54% for
diamond-coated drills, likely due to cooling shrinkage from
MQL application [75]. Table 4 shows the summary of the
work done so far by several researchers in terms of analyzed
outputs under various coating conditions. This table can be
used to compare the results on hole quality based on the
application of different coatings based on various machin-
ing parameters.

Considering all these things, the type of drill bit coat-
ing has a notable impact on hole circularity. Coated drill
bits, such as TiAIN/TiN or diamond-coated drills, tend
to produce better circularity compared to uncoated ones.

Circularity errors can vary between different materi-
als within the stack-up panel and the choice of drilling
sequence can also influence the results. In some cases,
circularity errors may vary with the depth of the stack,
indicating the need for careful consideration when drill-
ing deep stacks. Some studies have shown that circularity
and cylindricity tend to improve as the drilling process
progresses. This suggests that initial deviations may be
reduced through the course of drilling, possibly due to
tool stabilization.

5 Conclusion

The use of hybrid composite/metal stack panels in aircraft
manufacturing addresses limitations of traditional materi-
als, with coated drill bits offering essential solutions for
effective drilling. Coatings reduce friction, lower tempera-
tures, and enhance hole quality, supporting manufacturing
efficiency and reliability. Ti-based (e.g., TiN, TiAIN) and
diamond coatings improve drill bit durability by increas-
ing wear resistance and heat tolerance. Diamond coatings,
notably CVD diamond, are optimal for hard materials like
CFRPs, while DLC coatings with Ti or Cr layers add wear
resistance and low friction.

When drilling CFRP/Ti or CFRP/AI stacks, varying
wear mechanisms emerge: CFRP phases cause abrasion
and chipping, while metal phases lead to adhesion, dif-
fusion, and fracture due to metal properties. Coatings
like DLC and nanocomposite TiAIN help mitigate these
issues, though their effectiveness depends on drilling con-
ditions. Diamond coatings manage heat efficiently but may
face failure at high temperatures. Proper coating selec-
tion and process optimization are critical for extending
drill bit life, ensuring hole quality, and reducing costs
in CFRP/metal stack drilling operations. Thrust force in
drilling is influenced by factors like drill geometry, mate-
rial, coating, and cutting parameters. In composite/metal
stacks, such as Ti6Al4V and CFRP, thrust force is higher
in titanium due to elastoplastic chip formation, while
CFRP chips break through brittle fracture. Coated drill
bits—like diamond, TiAIN, and DLC—generally reduce
thrust forces by enhancing hardness and reducing fric-
tion, though increased cutting-edge radius from coatings
can occasionally raise forces. Proper coating selection
and wear management are essential for minimizing thrust
force in composite/metal stacks. Coatings like PVD TiAIN
and AITiN have minor impacts on torque, which is more
affected by feed rate and speed. Coated drills can reduce
torque, particularly in titanium, though it rises with wear
and chip buildup. Minimum quantity lubrication (MQL)
can stabilize torque, with diamond-coated drills perform-
ing well due to low friction. Temperature management is
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Table 4 Detail of outputs examined in the past using coated tools for stack material drilling

Workpiece Drill bit Coating Parameters Analyzed outputs Author
Ti-6Al-4 V/CFRP/ WC twist drills PVD-coated TiAIN/TiN, 0.05 and 0.08 mm/rev 1. Drill bit life [65]
AA7050 uncoated 2. Hole diameter accu-
racy
Ti-6Al-4 V/CFRP/ WC twist drills DLC and CVD coated 0.08 and 0.15 mm/rev 1. Diameter of holes [78]
AA-7050 diamond 2. Surface roughness
3. Burr height
4. Drill bit wear
Ti-6Al-4 V/CFRP/ WC drills CVD diamond coated, Feed (mm/rev)—0.05, 1. Drill bit life [66]
AA7050 C7 coated, uncoated 0.1, and 0.15 2. Thrust force
Speed—rev/min
(1000/2000)
(2000/4000)
(3000/6000)
CFRP/A1 7010 stack Standard twist drill Diamond, TiAICrN, Speed—>55 m/min (3000 1. Flank wear [64]
AITiSiN-G coated and rev/min) 2. Thrust forces
uncoated Feed—0.04 mm/rev 3. Drill bit failure
Feed rate—120 mm/min 4. Hole diameter
MQL—16 mm/min 5. Hole surface rough-
ness
CFRP/A1 2024 Micrograin carbide PVD coated nc-CrAIN/a- Spindle speed (rev/min) 1. Surface roughness [70]
Si;N, (Tripple Alwin) 1050, 2020, 2750 2. Thrust force
Feed—0.05, 0.1,
0.15 mm/rev
CFRP/A1 2024/CFRP Standard twist drill Uncoated and TiAIN Speed 15, 30, 45, 60 m/ 1. Hardness of the coat-  [69]
coated min ing
Spindle speed 752, 1504, 2. Adhesion of Al
2256, 3009 rev/min 3. Delamination factors
Feed—0.025, 0.05, 4. Thrust forces
0.075, 0.01 mm/rev 5. Surface cavities
CFRP/AI7075/CFRP Standard twist drill TiAIN, DLC coated Different cutting speed 1. Drill bit wear [63]
and feed for both coat- 2. The delamination
ings factor
T800/X850 CFRP and Drill with double point Diamond coated Spindle speed—1000, 1. Thrust forces [67]
7075-T651 Al angle 2000, 3000 rev/min 2. Drilling temperature
Feed rate—0.02, 0.04, 3. Diameter of the hole
0.06, 0.08 mm/rev 4. Hole surface rough-
ness
CFRP/A17075-T6 Twist drill Uncoated, ta-C, ta-C+Ti, Spindle speed—2600 1. Delamination [163]
ta-C +Cr coated rev/min 2. Burr height
Feed rate—0.05 mm/rev
CFRP/A17075-T6 Twist drill Uncoated, ta-C, ta-C+Ti, Spindle speed—2600 1. Hole diameter error [135]
ta-C+ Cr coated rev/min 2. Hole surface rough-
Feed rate—0.05 mm/rev ness
3. Circularity error
CFRP/A17075-T6 Twist drill Uncoated and ta-C coated Spindle speed (rev/ 1. Hole diameter error [189]

min) =2600
Feed rate (mm/rev) =0.05

2. Hole surface rough-
ness
3. Circularity error

critical, especially for CFRP, where excessive heat can
degrade resin and cause fiber debonding. Diamond-coated
drills help control temperatures by reducing friction and
enhancing heat dissipation, improving overall performance
and quality in drilling CFRP/metal stack assemblies.

@ Springer

Delamination in CFRP/Ti stack drilling is a critical failure
mode that impacts component quality, fatigue life, and per-
formance, often leading to high rejection rates. It occurs at
both entrance and exit holes due to bending strains and chip
evacuation. Drill bit coatings affect delamination, with DLC-

coated drills typically showing lower delamination factors
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bits, due to better nanocrystalline layer bonding, contribute to better surface quality

e While better than uncoated drills, they may not perform as well as diamond or

e Produce consistent interface diameters for aluminum and CFRP holes generally
e Perform well in dry drilling conditions, maintaining more stable hole diameters

compared to uncoated drills

AITiCrN

TiAlIN-coated drills in terms of wear resistance over a large number of holes

(DF) than TiAIN due to DLC’s high hardness, which reduces
thrust forces. Drilling from CFRP to metal minimizes exit
delamination by providing support from the metal layer. Burr
formation in titanium panels also presents significant chal-
lenges, increasing cutting time by up to 40% and assembly
costs by 30%. Coated drills like TiAIN and diamond reduce
burr height compared to uncoated drills, with TiAIN-coated
drills showing reduced aluminum adhesion and diamond-
coated drills benefiting from high thermal conductivity. Min-
imum quantity lubrication (MQL) further aids TiAIN drills
in reducing burrs, though diamond-coated drills may see
increased burrs due to chip congestion. Drilling from metal
to CFRP generally minimizes burr formation. Thus, coat-
ing selection, drilling sequence, and lubrication are key to
optimizing drill performance and reducing defects in CFRP/
metal stacks. The surface roughness of holes in composite/
metal stacks is heavily influenced by material properties,
machining conditions, and drill bit type. Coated drills, like
nc-CrAIN/a-Si;N, nano and diamond coatings, generally
produce smoother surfaces than uncoated drills by reduc-
ing wear and enhancing finish. Diamond-coated drills, with
their low friction, high hardness, and thermal conductivity,
provide smoother surfaces and less thermal damage, espe-
cially in CFRP and aluminum. Roughness tends to increase
with drill wear, and uncoated drills typically show higher
roughness over time. Drilling from metal to composite also
raises surface roughness due to chip evacuation challenges.
Cooling methods, such as spray mist, help manage tem-
perature and reduce roughness. In stack-up drilling, coated
drills generally maintain better hole diameter control and
circularity than uncoated bits, thanks to wear resistance and
reduced thermal impact. However, drill wear, temperature
variations, and material expansion affect diameter accuracy.
Circularity can improve over time as drill stability increases,
though factors like material type, stack depth, and cooling
conditions (e.g., MQL) may also impact circularity. Opti-
mal drill coatings and controlled conditions are essential
for minimizing errors and ensuring quality in stack-up drill-
ing operations. In summary, integrating hybrid composite/
metal stack panels in aircraft manufacturing requires precise
drilling to ensure quality and performance. Coated drill bits,
like Ti-based and diamond coatings, enhance wear resist-
ance, reduce friction, and manage heat, addressing chal-
lenges in drilling CFRP/metal stacks. These coatings help
control drilling temperatures, reduce delamination and burr
formation, and improve surface roughness and circularity.
The direct comparison of different coatings under various
conditions are shown in Table 5. Also, the advantages and
disadvantages of each coating type used by researchers in
the past for coating drill bits for composite/metal stack up
drilling are tabulated in Table 6. While challenges remain
in drill wear, temperature effects, and diameter consistency,
selecting the right coatings and optimizing conditions are
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essential for advancing efficiency, reliability, and sustain-
ability in aerospace manufacturing.

To address the challenges identified in this review paper,
certain recommendations can be considered in the future.
Research into the optimal thickness of coatings to balance
the benefits of reduced wear and friction with potential draw-
backs like increased cutting-edge radius and initial thrust
forces may help to achieve better drill quality and to keep
that parameter a constant one. Additionally, quantifying the
bond strength of coating with tool and adding a dopant layer
based on it may improve the bond strength. Development
of new cost-effective, environmentally friendly coating with
enhanced wear resistance, thermal stability, and reduced
friction such as novel nanocomposite coatings, and multi-
layer coatings may also help to improve the drilling quality.
Development of hybrid coatings that combine the benefits of
different materials, such as the hardness of diamond with the
lubricity of DLC or incorporating multiple layers with dif-
ferent properties, can also be tried. Integration of advanced
lubrication and cooling techniques, to work synergistically
with coated drill bits and further reduce temperatures and
wear, can also be experimented. By focusing on these trends,
the aerospace industry can continue to advance the perfor-
mance and reliability of drilling operations in hybrid com-
posite/metal stack panels, ultimately leading to more efficient
manufacturing processes and higher-quality end products.
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