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Abstract
The integration of hybrid composite/metal stack panels in aircraft manufacturing introduces significant advancements by 
combining the strengths of both materials. This review paper examines the critical role of coated drill bits in addressing the 
challenges associated with drilling these advanced materials. Coatings, such as Ti-based and diamond coatings, are shown 
to enhance drill bit performance by increasing wear resistance, reducing friction, and improving heat management. These 
improvements lead to better drilling outcomes, including reduced temperatures, minimized delamination, lower burr forma-
tion, and superior surface roughness and circularity. The review highlights the effectiveness of various coatings and their 
impact on drilling parameters like thrust force and torque, while also addressing the complexities of managing wear and 
maintaining diameter consistency. Ultimately, the strategic use of drill bit coatings and careful optimization of drilling con-
ditions are essential for achieving high-quality results and advancing efficiency and sustainability in aircraft manufacturing.

Keywords  Aerospace engineering · Drill bit · Tungsten carbide · Microscopic characterization and microanalysis · Wear · 
Surface coating

Abbreviations
AlTiN	� Aluminum titanium nitride coating
AlTiCrN	� Aluminum titanium chromium nitride 

coating
ANOVA	� Analysis of variance
ASME	� American Standard of Mechanical Engineers
BUE	� Build-up edge
BUL	� Build-up layer

CFRP	� Carbon fiber reinforced polymer
CFRP/Al	� Carbon fiber reinforced polymer/aluminum
CrN	� Chromium nitride
CVD	� Chemical vapor deposition
C7	� Nano-crystalline AlTiN grains embedded 

in an amorphous matrix of silicon nitride 
(Si3N4)

DF	� Delamination factor
DLC	� Diamond like carbon
FMC	� Fiber metal composite
HSS	� High speed steel
IFTC	� Infra-red thermography camera
LWQ	� Local wear quantity
MCD	� Microcrystalline diamond
MD CFRP	� Multi directional Carbon fiber reinforced 

plastic
MoS2	� Molybdenum disulfide
MQL 	� Minimum quantity lubrication
NCD	� Nanocrystalline diamond
PCBN	� Polycrystalline cubic boron nitride
PCR	� Partial correlation regression
PVD	� Physical vapor deposition
ta-C	� Tetrahedral amorphous carbon
ta-C + Cr	� Chromium dopant added tetrahedral amor-

phous carbon

Highlights

 • Effective coatings exhibit small grain size, high hardness, and 
good toughness.
 • Coatings reduce friction and thereby drilling temperatures, and 
improve hole quality.
 • In CFRP, wear mechanisms include abrasion, edge rounding, 
and localized chipping.
 • In metal panel, wear progression include adhesion, crater wear, 
chipping, and fracture.
 • Diamond, DLC, and TiAlN based coatings are mostly analyzed 
by researchers so far.
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ta-C + Ti	� Titanium dopant added tetrahedral amor-
phous carbon

Ti	� Titanium alloy
TiN	� Titanium nitride coating
TiAlCr	� Titanium aluminum chromium coating
TiAlCrN	� Titanium aluminum chromium nitride 

coating
TiAlN	� Titanium aluminum nitride coating
TiAlZrN	� Titanium aluminum zirconium nitride 

coating
TiSi	� Titanium silica coating
TiSiN	� Titanium silica nitride coating
UD CFRP	� Unidirectional carbon fiber reinforced plastic
WC	� Tungsten carbide

1  Introduction

Aircraft industries have recently concentrated on creating 
hybrid composite/metal stack panels to improve the char-
acteristics of next-generation aircrafts. Hybrid stacks often 
consist of materials comprised of multilayer fiber rein-
forced polymers (FRP) and metal alloys (titanium alloy 
or aluminum alloy). The ability to improve some notable 
characteristics without considerably raising total weight is 
one of the key advantages of stack design [1–4]. The use 
of composite and metal solves the shortcomings of metal 
in terms of corrosion resistance and fatigue strength as 
well as the shortcomings of composites in terms of bear-
ing strength, repairability and impact strength [5]. The 
analysis of the use of titanium, aluminum, and compos-
ite materials in various commercial aircrafts are shown 
in Fig. 1. It reveals a rise in composite and a decline in 
aluminum in the aviation industry. The data of Fig. 1 are 
obtained from Starke and Staley and Giasin [6, 7]. The 
usual configuration of CFRP/metal stacks are CFRP/
Ti6Al4V and CFRP/Al (Al2024, Al7050, Al7075) that 
are broadly used by aerospace industries these days [4, 8]. 
Major aircraft manufacturers, such as Airbus and Boeing, 
are extensively employing this multi-panel material in new 
generation passenger airplanes with the aim to fabricate 
structural elements such as skin segments, fuselages, and 
wing connections which support energy conservation and 
help system’s performance enhancement [9]. Thin lay-
ers of composite material and alloy panels can be used to 
make these stack panels, and they can be joined together 
by using adhesives like epoxy [10, 11]. Additionally, the 
staking reduces defects such as hole surface roughness, 
diameter error [12], exit delamination [13], and entrance 
burr height compared to individual CFRP or metal panel 
drilling [8]. Contradictorily, Xu et al. mentioned that there 
are still a number of problems related with drilling com-
posite CFRP/Ti stacks in a single pass, including severe 

hole damage, and poor hole precision [9]. Various actions 
are being taken in aircraft industry such as improving drill 
bit geometry, optimizing drilling parameters, introduction 
of coolant, and application of coating to minimize those 
damages. This review article deals with the actions taken 
through application of coatings to reduce the hole damage 
and increase the tool durability.

In general, the composite-metal system provides 
improved features such as CFRP’s superior corrosion resist-
ance, high specific stiffness, excellent fatigue strength [14, 
15], light weight, and shape adaptability [16–21], while the 
metal shows favorable strength-to-weight ratio, isotropic 
behavior, strong fracture resistance, superior repairability 
[22, 23], low density, and high hardness [24–26]. In CFRP 
composites, the strength of the composite material is mainly 
governed by the fiber. Despite the fact that CFRP parts are 
frequently produced in ready-to-use shapes, machining pro-
cedures (such as drilling, pocket milling, or edge milling) 
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Fig. 1   The percentage usage of materials in (a) Boeing, (b) McDon-
nell Douglas, and (c) Airbus aircrafts (PMC—polymer matrix com-
posite)
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are frequently necessary to meet functional and dimensional 
requirements [27].

CFRPs give huge challenges and difficulties for machin-
ing [20, 28] since it comprises extremely abrasive carbon 
fibers that create abrasive drill bit wear and drill bit edge 
chipping [29–32]. Mechanistic and numerical modeling of 
machining CFRPs continue to be challenging tasks in both 
academia and industry because of its anisotropic behavior 
and heterogeneous structure [33–35]. The most challenging 
aspects of commercial cutting of CFRP materials remain the 
active management of the in-process reactions, including 
drill bit wear, machining temperatures, acoustic emission 
(AE), and cutting forces [36–38]. Because of the limited 
thermal conductivity of CFRP, the cutting temperature is 
exceptionally high, which results in lowering the quality of 
the drilled hole by loss of epoxy on CFRP surfaces, and the 
softened matrix being smeared at the tool–work boundary 
[39].

Ti alloy, on the other hand, due to its intrinsic character-
istics, such as low modulus of elasticity, low heat conduc-
tivity, and high chemical affinity to drill bit materials, is 
still recognized in the modern manufacturing community 
as an incredibly challenging material to cut. Ti6Al4V is the 
alloy form of Ti which is vastly used in the aerospace indus-
try and it has great strength and little thermal conductivity. 
When adjusting the drilling speed to 75 m/min from 25 m/
min in dry conditions, drilling temperatures can reach from 
500 to 1000 °C in Ti6Al4V alloy [40]. This causes a num-
ber of drill bit wear issues, including cracking, chipping, 
and non-uniform flank wear [41]. Due to the high chemi-
cal affinity of the drill bit material with workpiece and the 
high cutting temperatures, built-up edge (BUE) and diffu-
sion issues might occur while drilling titanium alloys [42]. 
Poor surface integrity, quick drill bit wear, and high force 
and temperature generation can all cause unique problems. 
Additionally, the composite-panel drilling has a substantial 
interrelated influence on the Ti-drilling operation, making 
the cutting processes more complex than in cases of single 
Ti alloy drilling [4].

In aircraft constructions, drilling is a common machin-
ing technique used to produce round holes of various sizes 
and depths. Three hundred thousand to three million holes 
may be present in commercial aircraft [7, 43–49]. Drilling 
these holes can provide significant challenges due to the vast 
differences in the characteristics of FRP and metal panels. 
Matrix distortion, delamination, fiber shrinkage, hole size, 
hole circularity, exit burr effect, and other phenomena of a 
like kind are some of these [4, 14, 15, 20, 22, 50–52]. These 
issues are the reason for around 60% of all part rejections 
[11, 43, 53–55].

The main goal of this study is to present an in-depth 
analysis of drill bit coating application which may result 
in less friction in tool work interface and thereby reduce 

the drilling temperature to provide solutions for problems 
in stack drilling of the aircraft components. There are not 
any review papers in regard to the application of drill bit 
coating while performing FRP/metal stack drilling for the 
aircraft applications and this review paper is expected to 
fill this gap to give a detailed idea to help the aircraft 
industries. First, the key challenges of material usage in 
aircraft industry are discussed in terms of metal and com-
posite stacks. The different types of coatings used and their 
merits and demerits will be briefed in the next section. 
Then, the performance indicators of the manufacturing 
defects in terms of drilling forces, tool wear, and tem-
perature generation will be discussed. The key findings 
of experimental studies conducted regarding the applica-
tion of coating for drill bit over the past few years while 
performing FRP/metal stack-up drilling process and their 
impact on hole quality will then be outlined. By emphasiz-
ing relevant findings from the literature, this review paper 
strives to bring forth the benefits of coating drill bit and 
comparing the outcomes of different coatings.

2 � Introduction to coating

Coating is a thin layer of a protective material, applied to 
the drill bit's surface. By increasing the drill bit's lifespan 
and enhancing its chemical and physical stability at high 
temperatures, the coating enhances the drill bit's perfor-
mance and permits faster cutting rates [56]. These coatings 
have been tested for increasing drill bit wear resistance and 
life as well as lowering production and setup costs [57]. 
In comparison to uncoated bits, coated bits are stronger, 
more lubricated, sharp, heat resistant, and durable [58]. 
While machining, coatings prevent drill bit overheating 
and adhesion of lump chips [57]. In manufacturing, drill 
bits are typically coated with either physical vapor deposi-
tion (PVD) or chemical vapor deposition (CVD) methods 
[59]. Drill bits with PVD-TiAlN coatings are frequently 
utilized in metal drilling processes due to their excellent 
chemical stability, wear resistance, and hardness. Typi-
cally, the PVD laborious coating will increase the life of 
the drill bit and improve machining performance [60, 61]. 
Kwon et al. followed the CVD procedure to diamond coat 
the step drill and discovered that the grains are initially 
quite coarse, but when the coating duration is increased, 
the grains become fine and the surface becomes smoother 
[62]. Table 1 summarizes the research works carried out 
on drill bit coating application in CFRP/metal drilling pro-
cess in aircraft manufacturing sector. The detailed specifi-
cation of workpiece and tool, the cutting environment, the 
coating type and method, and the machining parameters 
used—all are concisely briefed in the table.
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2.1 � Ti‑based coatings

Various Ti based coatings such as TiAlN, AlTiN, TiN, 
TiAlZrN, TiAlCrN, and TiAlCr are being tested as drill bit 
coatings for stack-up drilling. TiN coating has good adhe-
sion property and effectively protects the bit from adhe-
sive and abrasive wear [79]. Additionally, TiN has a low 
frictional coefficient compared to AlTiN and TiAlN coat-
ings which results in reduction of hole surface roughness 
[80]. When cutting CFRP/Al2024-T3 alloy, Kurt et al. and 
Shunmugesh and Kavan mentioned that TiN-coated drill 
bits produced workpiece roughness that was comparable 
to that of TiAlN-coated drill bits [81, 82]. It is because 
titanium has a unique affinity for aluminum, which causes 
pressure and heat to specifically activate chemical and 
physical diffusion processes near the cutting edges. As a 
result, aluminum chips adhere to the coating, aluminizing 
the drill's surface and creating friction between the drill bit 
and the material, making drilled holes more uneven. Also, 
good thermal stability of TiN helps to prevent built-up 
edges and enhance heat transfer away from the cutting drill 
bit. The TiAlN coating, which has better oxidation resist-
ance and hardness than TiN, is appropriate for dry machin-
ing applications [79, 83, 84]. Danisman et al. expressed 
that PVD TiAlN coated drill has sensible performance in 
terms of damage resistance, warmth corrosion resistance, 
oxidation resistance, and chemical stability when com-
pared to TiN and TiAlN hard coatings [85]. Puneeth and 
Smitha had demonstrated that, compared to TiN-coated 
HSS and untreated HSS twist drill bits, TiAlN-coated 
HSS twist drill bits had a longer tool life [86]. Prajapati 
et al. compared TiAlN, TiN, and TiAlN + CrN coatings 
and found that, in addition to adherence of thin coating 
to substrate, TiAlN + CrN coating has good mechanical 
properties [87]. Furthermore, Giasin et al. mentioned that 
AlTiN/TiAlN coating with a microlayer structure is prefer-
able for applications involving materials with a hardness 
above 45 HRC [56].

When considering monolayer and multilayer coatings, 
TiN monolayer coating outperformed TiN-surface mul-
tilayer coating and TiCN coating films when evaluating 
thrust force and torque [20, 88]. The cross-section view of 
nc-CrAlN/a-Si3N4 (Tripple Alwin) multilayer nano-coat-
ing is shown in Fig. 2 as an example of multilayer coating. 
These are nanocrystalline forms of coatings composed of 
very hard nanocrystalline crystals that are 10 nm in size 
and produce high hardness. The machining performance 
of TiAlN/TiAlZrN multilayer coatings has improved due 
to its wear behavior, similar to the TiAlZrN monolayer 
with comparable mechanical properties, despite a reduced 
bilayer period [89].

2.2 � Diamond coating

Cemented tungsten carbide is widely utilized as drill bit 
material for CFRP/metal stack drilling; however, it exhibits 
quick wear in machining it, demanding research into the 
substrate and coating of carbide drill bits [90–93]. It was 
found by a few researchers that diamond-coated low-Co 
added carbide drill bit has shown to be the most effective 
drill bit material for stack-up machining [94–96]. To reduce 
drill bit wear and extend drill bit life, many firms also apply 
diamond coatings [62]. Drill bits have been covered in dia-
mond coatings of various microstructures and thicknesses 
because they offer great qualities like high hardness, high 
thermal conductivity, low friction coefficients, high wear 
resistance, and chemical stability [64, 95–104]. To prevent 
excessive drill bit wear under high-speed machining and 
for cutting hard materials like CFRP, diamond-coated drill 
bits are extremely essential. In CVD diamond coating pro-
cedure, which employs gaseous CH4 with a lot of carbon 
[62], a coating of diamond will be deposited that is several 
microns thick on the surface of tungsten carbide (WC). In 
this method, Co is removed from the WC drill bit surface by 
a pre-treatment procedure that strengthens the adherence of 
the diamond covering. The CH4 gas is then heated by a hot 
filament to a temperature of between 700 and 1000 °C and 
deposited on the drill's surface. Compared to polycrystalline 
diamond (PCD), CVD diamond is more robust and harder 
[62].

The drill bit performance can be tailored by taking into 
account the qualities of the coating layer and the diamond 

Fig. 2   Cross-section view of nc-CrAlN/a-Si3N4 (Tripple Alwin) 
nano-coating [70]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology	

grain size. While microcrystalline diamond (MCD) coat-
ings offer high adhesion and wear resistance, nanocrystal-
line diamond (NCD) coatings’ hardness is comparatively 
low because of the development of non-diamond phases, 
such as sp2 graphitic carbon [105]. Nevertheless, the lubri-
cating effect of graphitic phases can lower the machining 
resistance. Additionally, grain refining can be used to reduce 
workpiece surface roughness [106–109]. Dual- and multi-
layer diamond coatings have been created that combine the 
benefits of MCD and NCD coatings thanks to advancements 
in the fabrication of monolayer drill bit coatings of MCD 
or NCD [101, 106, 107, 110–117]. When compared with 
single-layer coated drill bits, dual and multilayer coated drill 
bits display exceptional machining performance because of 
the wear resistance and adhesion given by MCD near to the 
substrate and the lubrication effect from the action of NCD 
on the coating surface [105]. However, dual- and multilayer 
diamond coatings are limited in real-world applications 
because of the variation in residual stress between the layers 
and the loss of adhesion caused by the high graphitic carbon 
content at the MCD-NCD interface layer contact. Research 
was done on gradient diamond coatings, in which the grain 
size continuously declines from MCD of the substrate inter-
face to NCD of the coating surface to address these prob-
lems. The adherence of a coating with such a microstructural 
transition may be superior to layers of MCD and NCD that 
alternate [105].

2.3 � Diamond‑like carbon coating

Carbon atoms exhibit three primary hybridized states: graph-
ite, diamond, and diamond-like carbon (DLC). Graphite is 
characterized by 100% sp2 hybridization, while diamond is 
categorized as 100% sp3 hybridization. Graphite possesses 
a hexagonal plane construction with strong covalent in-plane 
bonds and weak Van der Waals out-of-plane bonds, result-
ing in a low coefficient of friction (COF). Contradictorily, 
diamond features a tetrahedral structure in which each atom 
is bonded with three others covalently, resulting in electrical 
insulation, highest natural hardness, and exceptional thermal 
conductivity. DLC exhibits a hybrid structure of sp2 and sp3 
carbon atoms, and its properties depend on the ratio of these 
hybridizations [118]. The term diamond-like carbon (DLC) 
was first introduced by Aisenberg and Chabot [119]. They 
used the ion beam deposition method with carbon (C) and 
argon (Ar) particles and a graphite electrode to create DLC 
layers at room temperature. These films exhibited optical 
transparency, wear resistance, and electrical conductivity, 
with a somewhat crystalline structure reminiscent of dia-
mond lattices. Aisenberg and Chabot observed that the use 
of DLC coatings enhanced the cutting performance of paper-
cutting blades and reduced frictional coefficients [120].

Four different DLC coatings such as hydrogen-free amor-
phous carbon (a-C), hydrogen-free tetrahedral amorphous 
carbon (ta-C), hydrogenated amorphous carbon (a-C:H), 
and hydrogenated tetrahedral amorphous carbon (ta-C:H) 
are being used in industrial applications these days. They 
typically have great wear resistance and little friction. On 
the other hand, based on the sp2/sp3 hybridization ratio 
and microstructure of DLC coatings, different tribological 
behaviors might be observed in different friction circum-
stances [121–124]. a-C:H coatings deliver ultra-low friction 
in vacuum or inert environments [125, 126], whereas ta-C 
coatings offer high wear resistance and ultra-low friction in 
the presence of hydrogen, oxygen, or water molecules [127, 
128]. Under oil-based boundary lubrication, the wear was 
substantially higher in the ta-C/steel system in comparison 
with the a-C:H/steel system [129]. ta-C possesses several 
desirable properties such as low COF, excellent protection 
against adhesive wear, and tribo-oxidation that make it suit-
able for stack-up drilling applications. Its high-stress endur-
ance is improved by this feature, even in dry and poorly 
lubricated operating environments. ta-C's high hardness pro-
vides exceptional resistance to wear from abrasives. Its inert 
surface chemistry guarantees seamless functioning, mini-
mizes sticking, and gets rid of deposit-related demolding 
problems [130]. Moreover, ta-C exhibits improved corrosion 
resistance and optical transparency [131]. Furthermore, a 
2-μm-thick ta-C coating significantly increased the resist-
ance of stainless steel to abrasive wear, extending its lifetime 
to 85 years from 1 week [132]. These enhanced qualities 
result in reduced wear on highly stressed surfaces, extended 
component service life, and increased manufacturing process 
productivity.

Researchers have explored the effects of alloying 
DLC with transition metals such as Ti [133–135] and Cr 
[118, 135]. DLC is inherently brittle, and the formation 
of nanoscale carbide inclusions is induced by alloying it 
with stable metals that generate carbides, increasing the 
material's hardness [132]. Figure 3a shows a PVD coat-
ing set up of ta-C coating with alloying element in the 
coating machine. The PVD coating method is capable of 
producing highly pure and high-performance coatings 
because it transfers the coating material at the atomic or 
molecular level. In Fig. 3b, the coating layer referred to 
ta-C, seed layer referred to Ti layer, and substrate mate-
rial is the tool material. Alloying with group IIB, IIIB, 
and IVB transition elements is often employed to improve 
the mechanical characteristics of ta-C films by improv-
ing the bond strength between the substrate and ta-C 
[136]. This approach can reduce stress on the film and 
promote good adhesion with intermediate layers [137]. 
Few studies have found that ta-C coatings under varied 
loads ranging from 10 to 70 mN have a hardness range 
of 20 to 29.1 GPa [136, 138, 139] and ta-C + Ti coating 
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at lower critical load (10 mN) have a hardness range of 
16.8–28.1 GPa [140, 141]. ta-C + Cr coating’s hardness 
was measured by Fiaschi et al. to be between 2.5 and 3.5 
GPa at 100 mN load, and the reason for this low value is 
the low amount of (around 50%) sp3 atoms [118]. Zhang 
et  al. found that ta-C + Ti coatings exhibited adhesive 
strength values in the range of 359–381 mN [141]. When 
considering the coefficient of friction of ta-C coatings, 
Konca et al. obtained it between 0.07 and 0.20 in ambient 
air for tungsten molybdenum high-speed steel tools (M2 
tool steel) coated with 2.2 ± 0.2 μm ta-C against Al and Ti 
counterparts [142]. Fiaschi et al. applied 1–1.5-μm-thick 
ta-C + Cr coating on pure iron and AISI 304 stainless steel 
substrates and obtained a COF of 0.2–0.5 and 0.17–0.25, 
respectively [118]. Guo et al. obtained a COF of 0.07 for 
Ti4%‐ta-C coating with the thickness of 520 ± 20 nm [140] 
and Zhang et al. obtained a COF of 0.14–0.22 for taC + Ti 
with 100Cr6 steel counterpart [141]. Based on these find-
ings regarding hardness, bond strength, and COF, it can be 
decided that the addition of seed layer/alloying element to 
DLC can further improve the drilling quality.

3 � Influence of tool coating on performance 
indicators of stack material drilling

3.1 � Impact of tool coating on drill bit wear

One of the crucial aspects in drilling processes is drill bit 
wear, which has a direct effect on drill bit life, hole surface 
quality, and production costs. When cutting CFRP/Ti or 
CFRP/Al stacks, drill-bit wear happens as the consequence 
of rubbing of the cutting edge against the tough carbon fibers 
and the attrition, abrasion, and adhesion brought on by the 
aluminum or titanium alloy [74]. Because of the abrasive 
character of the reinforcing carbon fibers in CFRP panels, 
abrasion acts as the major wear method for drill bit edges, 
leading to cutting-edge rounding or edge dulling. On the 

other hand, titanium alloys cause rapid drill bit wear growth 
with serious diffusion, crater wear, adhesion, as well as cata-
strophic failures like fracture or edge chipping because of 
their low thermal conductivity leading to elevated cutting 
temperatures and inherent high strength sustained at higher 
temperatures [74].

D’Orazio et al. mentioned that abrasion, edge rounding, 
and localized chipping at the cutting edge are the primary 
wear modes when using a drill bit coated in DLC (Fig. 4), 
whereas abrasion and aluminum particle adhesion on the 
rake surface are the main wear mechanisms when using a 
drill bit coated in nanocomposite TiAlN (Fig. 5) while drill-
ing CFRP/Al stack [63]. The SEM images of the rake and 
flank faces of the DLC-coated tool after drilling 170 holes 
are displayed in Fig. 4. As seen in Fig. 4a–c, it is evident that 
chipping is occurring, mostly in the vicinity of the cutting 
edge. This is due to an excess of mechanical stresses brought 
on by the high cutting speed in that area. Figure 4c and d 
depicts flank wear and edge rounding. Figure 5c shows the 
adhesion of AA7075 particles (diameter lower than 50 µm) 
observed on the rake face, far from cutting edge, and Fig. 5d 
shows the fracture of the TiAlN coating in the area surround-
ing Al particles. According to Montoya et al., abrasion was 
the major wear type on the uncoated drill bit [64]. The cor-
ner, chisel edge, primary, and secondary cutting edges exhib-
ited abrasion. TiAlCrN and AlTiSiN-G coated drills showed 
abrasion, coating failure, and adhesion wear, with aluminum 
forming a build-up edge (BUE) on the failed coating [64]. 
The rough surface from grinding operations, not fully cov-
ered by a 4-µm coating, caused aluminum to adhere to the 
rake face. Both TiAlCrN and AlTiSiN-G coatings retained 
the same surface profile as uncoated drills due to similar 
material adhesion. In contrast, a thicker 6-µm diamond coat-
ing provided a smooth surface, only experiencing abrasion 
and minimal aluminum adhesion wear [64]. Fujiwara et al. 
found that TiAlCr/TiSi coatings offered superior wear resist-
ance and reduced chip adherence compared to TiAlN and 
TiSiN when drilling CFRP/Ti6Al4V stacks [144].

Fig. 3   (a) Drill bit setup for 
PVD coating process. (b) SEM 
image after applying coating 
[143]
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Contradictorily, when drilling CFRP/Al2024 stacks, 
Zitoune et al. observed that the primary wear mode is alu-
minum adhesion due to interlocking of alloy asperities on 
the cutting edge under high contact pressure, without diffu-
sion or oxidation. SEM analysis showed that coated drills 
have a superior surface finish compared to uncoated drills, 
mainly due to the polishing process before PVD coating, 
which enhances surface quality in both composite and alu-
minum panel. However, drill coatings do not prevent alu-
minum fusion on the cutting edges [70]. Shyha et al. con-
ducted experiments on Ti/CFRP/Al stacks using a CVD 
diamond-coated WC drill bit, choosing reverse sequence to 
avoid the damage caused by sharp Ti chips while excavating. 
They found that the most frequent failure mode was coating 
peeling/flaking after a few holes. Other failure mechanisms 
included chip clogging at the flutes, cutting lip breakage 
due to BUE development, and serious corner rounding of 
the cutting edge caused by abrasion from CFRP also lead to 
coating failure for a notable extent [66].

Xu et al. noted that when drilling CFRP/Ti6Al4V in dry 
conditions, TiAlN-coated drills retain their corner edge 
topography better than diamond-coated drills, which suffer 
from severe edge fracture. The TiAlN coating's low thermal 
conductivity helps transfer heat to the chips, softening them 
and reducing adhesive wear. Conversely, the diamond coat-
ing's high thermal conductivity causes heat to be conducted 
through the drill body, raising the edge temperature [41]. 
When subjected to temperatures greater than 600–700 °C, 

the diamond probably experiences oxidation and graphitiza-
tion, and brittle graphite is prone to breaking while undergo-
ing drilling [145, 146].

When it comes to flank wear, it is defined in ISO 8688:1 
that the flank wear is measured in a parallel direction to the 
wear facet and in a perpendicular direction to the initial cut-
ting edge, for example, from the initial cutting edge to the 
wear facet limit which cuts the initial flank face. According 
to D’Orazio et al., while drilling a CFRP/AA7075/CFRP 
stack, the DLC-coated drill experiences significantly less 
flank wear than the TiAlN-coated one as shown in Fig. 6 
[63]. Flank wear on DLC-coated drill bits increases mono-
tonically with the number of holes drilled due to chipping 
around the perimeter. However, the flank wear was consist-
ently lower than that of TiAlN-coated drill bits, with TiAlN 
showing 2.25 times more wear than DLC after 170 holes, 
as shown in Fig. 6 [63]. Montoya et al. mentioned that good 
hole quality and lower thrust forces can be attained if the 
flank wear is low. They further mentioned that AlTiSiN-G 
and TiAlCrN coatings were ineffective since the flank wear 
was extremely similar to that of the drill bit without a coat-
ing. However, the diamond coating was effective since the 
flank wear measured with the uncoated drill was 50% more 
than that measured with the diamond-coated drill [64]. Xu 
et al. found that under dry conditions, TiAlN-coated drills 
show a flank wear width of about 31 µm with titanium 
particles adhering to the cutting edges, while diamond-
coated drills exhibit a flank wear width of around 23 µm 

Fig. 4   SEM images of the DLC 
coated drill after a number of 
holes equal to 170: (a) flank 
face showing edge chipping, 
(b) chipped zone from the rake 
face, (c) chipped zone from the 
flank face, and (d) flank wear 
and edge rounding [63]
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with significant edge chipping [41]. The diamond coating's 
low COF and high thermal conductivity result in minimal 

titanium fusion on the edges. Under minimum quantity 
lubrication (MQL), TiAlN-coated drills have a reduced 
flank wear width of 25 µm, whereas diamond-coated drills 
experience significantly greater wear, with a maximum 
flank wear width of 57 µm due to titanium chip accumula-
tion and CFRP chip abrasion [41]. Kuo et al. reported that 
when drilling Al/CFRP/Ti panels, uncoated drill bits have 
a longer lifespan than PVD TiAlN/TiN-coated WC drills. 
Uncoated drills generated 180 holes with a flank wear of no 
more than 0.23 mm, while coated drills met the 0.30 mm 
flank wear requirement after 90–148 holes. ANOVA calcula-
tions showed that both feed rate and drill bit coating signifi-
cantly influenced drill wear, with feed rate having a higher 
partial correlation regression (PCR) at 78.4%. [65]. Tashiro 
et al. found that the TiAlCr/TiSi-coated drill had a longer 
lifespan than the TiAlN-coated drill since the TiAlCr/TiSi 
coating had a 40% greater coating strength than the TiAlN 
coating. Additionally, they found that tool life under water 
mist drilling was shorter than that in dry drilling as the life 
of drill was 90 holes in water-mist cooling and 140 holes in 
the dry process. They believed that 0.2 mm of flank wear 
represented the maximum drill bit life [76].

Fig. 5   SEM images of the nanocomposite TiAlN coated drill after a number of holes equal to 170: (a) flank face, (b) flank wear, (c) edge round-
ing and rake face, and (d) fractured coating in the area surrounding Al particles stuck to the rake surface [63]

Fig. 6   Flank wear progression during drilling of CFRP/AA7075 
stacks [63]
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Wang et al. said that the drill bit wear is a combination 
of edge rounding wear and flank wear [71]. For the pur-
pose of comparison, Fig. 7 displays the LWQ in CFRP-only 
and Ti-only while drilling the 40th hole, together with the 
flank wear and edge rounding wear (assessed in LWQ) of 
the coated drills in drilling of CFRP/Ti stack. The total flank 
wear land from drilling CFRP and Ti individually is greater 
than that from drilling the CFRP/Ti stack for both coated 
drills. The edge rounding wear measurements from drill-
ing CFRP-only, combined with those from Ti-only, differ 
by less than 10% from those obtained from the CFRP/Ti 
stack. This small discrepancy is likely due to variations in 
drill geometry. Thus, with LWQ applied, tool wear from 
drilling the CFRP/Ti stack equals the sum of the wear from 
drilling CFRP on the edge and Ti on the flank. They further 
mentioned that, to the overall drill bit wear, the involvement 
of the Ti layer is quite minimal in comparison to CFRP [71]. 
Montoya et al. mentioned that if the rate of wear on the rake 
face accelerates faster than the wear on the flank face, it 
would result in a higher local wear quantity (LWQ) but a 
smaller flank wear measurement [64]. In this way the value 
of flank wear is directly impacted by the rake face's wear.

Wang et al. mentioned that when drilling CFRP/Ti stack 
using AlTiN-coated, nanocomposite-coated, and uncoated 
drills, the flank wear was 145, 135, and 104 µm, respectively, 
and edge rounding wear was 1650, 1500, and 1450 µm2, 
respectively [71]. This shows that the uncoated drills outper-
formed the coated carbide drills. They added that drilling a 
CFRP/Ti stack prevented edge chipping because the carbon 
fibers in the upper plate brush off any Ti fusion when drill-
ing the bottom plate as shown in Fig. 8b and d and increase 
drill life. The Ti fusion left behind from drilling the Ti plate 
was completely gone after drilling around 1 mm into the 
top of the CFRP plate (Fig. 8b), and also the cutting edge is 
rounded and smoothed (Fig. 8d) [71]. Figure 8a and c dis-
plays the drills with the Ti adhesion after drilling the bottom 

Ti plate of the CFRP/Ti stack. The hardness of carbon fiber, 
roughly twice that of titanium, efficiently removes Ti fusion 
from the drill's cutting edge according to abrasive wear 
theory. Initially, rounding the edge while cutting the CFRP 
layer prevents edge chipping, but as the drill becomes dull 
over time, the likelihood of edge chipping decreases while Ti 
fusion near the cutting edge increases. At this stage, remov-
ing Ti adhesion becomes crucial to minimize chipping [71].

Cao et  al. noted that thrust force and temperature 
increased as more holes were drilled in a CFRP/Ti stack 
using a TiAlN-coated drill bit. This led to adhesive wear, 
increased chip–drill contact area, and higher frictional wear. 
Initially, edge rounding wear occurred due to abrasive car-
bon fibers. As cutting temperature rose, Ti chips chemically 
adhered to the drill margin, which was eventually damaged 
by abrasive carbon fibers and WC–Co grains, leading to the 
removal of Ti fusion and TiAlN coating with increased spin-
dle speed and drilling [73].

Drill bit wear significantly impacts drill bit life, hole qual-
ity, and production costs in drilling processes. In cutting 
CFRP/Ti or CFRP/Al stacks, wear occurs due to the tough 
carbon fibers causing abrasion and the aluminum or titanium 
alloys causing attrition, abrasion, and adhesion. Carbon fib-
ers mainly cause abrasion leading to edge rounding or dull-
ing, while titanium alloys cause rapid wear with diffusion, 
crater wear, adhesion, and catastrophic failures due to high 
cutting temperatures. Various coatings on drill bits, such 
as DLC, TiAlN, TiAlCrN, AlTiSiN-G, and diamond, affect 
wear differently. DLC coatings exhibit abrasion, edge round-
ing, and localized chipping. TiAlN coatings show abrasion 
and aluminum particle adhesion, while TiAlCr/TiSi coatings 
perform better due to higher wear resistance and reduced 
chip adherence. Uncoated drills often face severe abrasion, 
while diamond-coated drills face coating failure but mini-
mal adhesion wear. Flank wear is a key indicator of drill bit 
wear. Studies indicate that DLC coatings experience less 

Fig. 7   Comparison of flank wear and edge rounding wear (LWQ) of the AlTiN and nanocomposite coated drills at hole 40. (a) Flank wear and 
(b) edge rounding wear [71]
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flank wear than TiAlN, and diamond coatings effectively 
reduce wear. However, under certain conditions like MQL, 
diamond coatings show greater wear due to titanium chip 
accumulation. Uncoated drills sometimes outperform coated 
drills in certain conditions. The interaction between CFRP 
and Ti, such as CFRP brushing off Ti fusion, significantly 
affects wear and drill life. Overall, factors like feed rate, drill 
bit coating, and cutting conditions (dry or MQL) play crucial 
roles in determining drill bit wear and performance, and the 
quantitative data of this section is summarized in Table 2.

3.2 � Effect of tool coating on thrust force

Since it affects the quality of the drilled holes and the result-
ing drill bit wear, thrust force during drilling is one of the 
primary parameters used to assess the machinability and 
power consumption of various composite/metal stacks in 
drilling operations [29, 64, 147–149]. Drill bit geometry, 
cutting parameters, drill bit material, drill bit coating, work-
piece material, lubrication-cooling process etc. all have an 
impact on thrust force [63].

The cutting force required to remove the material from 
the workpiece is produced during the machining process 
by the drill bit moving against the workpiece. Regardless 
of the drill bits used, machining the Ti6Al4V panel often 
involves substantially larger thrust force than machining 
the CFRP panel [9, 41, 76]. This is attributable to the 
different chip removal processes used by metallic and 

composite materials. The titanium alloy chips are split 
according to elastoplastic deformation and have serrated 
and continuous shapes, which results in significantly larger 
mechanical resistance and consequently larger force mag-
nitudes [150, 151]. In contrast, the CFRP panel is managed 
by the brittle fracture chip removal mode, which produces 
powdery chips and produce thrust forces of much lower 
magnitudes. When drilling CFRP/Al/CFRP stacks, Zhong 
et al. also agreed that, regardless of coated or uncoated 
drill bit, the maximum thrust force in the drilling of CFRP 
panel is smaller than that of Al panel [69]. According to 
Shyha et al., drilling Ti/CFRP/Al with an uncoated drill 
bit showed the force required for Ti (2200 N) was about 
three times higher than for CFRP and Al (700 N each). 
With worn drill bits, thrust forces increased by 5, 7, and 
16 times in Al, Ti, and CFRP, respectively. Further, feed 
rate and cooling were crucial for CFRP and Al, while 
drill coating significantly affected thrust force in Ti, with 
a PCR of 23%. For the first hole drilled with an unworn 
bit, a diamond-coated drill had higher thrust forces than 
an uncoated drill in Ti and CFRP, but the reverse was 
true for Al [66]. Wang et al. observed that the thrust force 
recorded during drilling of Al (150-350N) was about two 
times greater than that recorded during drilling of CFRP 
(80–180 N) when utilizing a diamond-coated drill to drill 
CFRP/Al [67]. Montoya et al. obtained a thrust force value 
of 40–100 N in CFRP panel and 120–180 N in Al panel 
on the first hole regardless of coated or uncoated tools 

Fig. 8   The SEM pictures of the 
drill cutting edges (a, c) before 
and (b, d) after drilling into the 
top CFRP layer when drilling 
CFRP/Ti stack [71]
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[64]. D’Orazio et al. showed that the thrust force in Al 
panel with either DLC-coated or TiAlN-coated drill var-
ies between 600 and 800 N, while in CFRP panel, it varies 
between 150 and 300 N as shown in Fig. 9 [63]. It can 
also be seen from Fig. 9 that, after 170 holes, the value of 
thrust force in Al (FAA7075) increases by around 8.7% when 
using the DLC coated drill and by around 27.9% while 
using the nanocomposite TiAlN coated tool. Similarly, 
the value of thrust force in CFRP (FCFRP) with the DLC-
coated drill increases by around 52% of the starting value, 
compared to 57.3% with the TiAlN-coated tool. These dis-
parities can be explained by the fact that the DLC coated 
tool experiences less severe tool wear than the TiAlN tool. 
However, Brinksmeier et al. detected the opposite patterns 
when using a bigger drill diameter (16 mm), CFRP panel 
shows higher thrust forces than Al panel [152]. Kuo et al., 
when drilling a Ti/CFRP/Al stack panel, discovered that 
the variance in thrust force was Ti > CFRP > Al, regard-
less of coating [65]. The variation in the cutting forces 
produced by the drill and the various workpiece materials 
can account for this disparity in forces [153]. Kuo et al. 
obtained the thrust forces in Ti panel to be almost twofold 
higher than that in CFRP and Al panels when drilling with 
PVD DLC and CVD diamond-coated drill bits. The thrust 
force magnitudes were in the order of Ti > Al > CFRP for 
both the coatings irrespective of feed rate [78]. Tashiro 
et al. observed that drilling CFRP/Ti6Al4V with TiAlCr/
TiSi and TiAlN drill bits showed higher thrust force at the 
CFRP entrance, which gradually decreased. In contrast, 
the titanium alloy section experienced significant thrust 
force at both the entrance and exit due to its resistance to 
cutting. As the drill bit progressed through both layers, the 
thrust force decreased [76]. Furthermore, TiAlN-coated 
drills produced higher thrust forces in Ti panels and lower 
in CFRP panels compared to TiAlCr/TiSi-coated drills. 
Mist cooling and TiAlCr/TiSi coating further reduced 
thrust force in both panels [76].

Montoya et al. found that uncoated drills produced 30 to 
50% lower average thrust force for the initial hole compared 
to diamond-, TiAlCrN-, and AlTiSiN-G-coated tools when 
drilling CFRP/Al stacks. This difference is due to the coating 
thickness affecting cutting-edge sharpness, with uncoated 
drills having a radius increase of 9 μm, compared to 11 μm 
for TiAlCrN and AlTiSiN-G, and 15 μm for diamond-coated 
drills [64]. Kuo et al. observed that TiAlN/TiN-coated drills 
increased thrust forces by 12–18% compared to uncoated 
drills when drilling Ti/CFRP/Al panels. This increase is 
due to the coating's larger cutting-edge radius of 33 µm ver-
sus 22 µm for uncoated drills as shown in Fig. 10. ANOVA 
results indicated that both feed rate and drill bit coating sig-
nificantly affected torque and thrust force in the Ti layer, 
while only feed rate influenced these parameters in the Al 
layer. For the CFRP layer, neither factor was significant [65].

Zhong et al. mentioned that the maximum thrust force 
with a TiAlN-coated drill is less than that of an uncoated 
drill because of the high hardness of the TiAlN coating 
[69]. The existence of TiAlN coating reduces the tendency 
of the drill to adhere with the aluminum chips when drill-
ing the aluminum stack, resulting in a lower thrust force 
when using a TiAlN-coated drill bit [69]. Kuo et al. found 
that while drilling at a feed rate of 0.08 mm/rev, CVD 
diamond-coated drill, generated slightly lesser thrust 
forces (Ti—524 N; CFRP—187 N; Al—243 N) compared 
to using a DLC-coated drill (Ti—526 N; CFRP—222 N; 
Al—265 N) [78]. The reduced thrust forces were due to 
the drill's design, featuring a sharper 120° primary point 
angle and a 180° secondary angle, which shortened the 
cutting lips and lowered torque requirements. Wang et al. 
found that while drilling CFRP/Ti stacks with AlTiN-
coated, nanocomposite-coated, and uncoated drill bits, no 
significant variation in thrust force was observed across 80 
holes. However, the nanocomposite and AlTiN-coated drill 
bits produced slightly higher thrust forces in the titanium 
and CFRP panels [71]. According to Xu et al., the thrust 
forces created by the TiAlN-coated drills (75–150 N in 
CFRP panel and 300–550 N in Ti panel) under the MQL 
condition are significantly lower than those obtained by 
the diamond-coated drills (75–300 N in CFRP panel and 
550–1200 N in Ti panel) in CFRP/Ti drilling as shown 
in Fig. 11 [41]. This phenomenon is brought about by 
the application of MQL, which raises the humidity in the 
drilling region. Because the tribological characteristics 
of diamond coatings is highly sensitive to humidity, the 
COF of the coatings tends to be boosted when the humid-
ity rises, resulting in a larger cutting force [154]. On the 
one hand, the brittle characteristics of the carbon/epoxy 
system are retained in the composite polymer matrix due 
to the cooling effects caused by the MQL oil supply. The 
greater thrust forces that are achieved when applying the 
MQL condition indicate that the CFRP phase does not 
soften and, as a result, resists a greater mechanical resist-
ance to the chisel and drill cutting edges [41]. Figure 11 
further shows that the thrust forces created by the TiAlN-
coated drills (60–150 N in CFRP panel and 280–550 N 
in Ti panel) under dry condition are slightly higher than 
those obtained by the diamond-coated drills (40–125 N 
in CFRP panel and 230–550 N in Ti panel) [41]. Zitoune 
et al. reported that when using an uncoated drill bit to drill 
composites, the thrust forces obtained are 20–25% higher 
than when using a coated drill bit [70]. This variation 
increased to a value of 47% when drilling the aluminum 
component, and which can be explained by the coated drill 
bits' significant reduction in friction between the machined 
surface and the drill's body as well as between the drill 
bit's flutes and the chips [70]. However, according to Mon-
toya et al. the usual thrust force in the aluminum plate 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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exhibits a nearly asymptotic tendency when the diamond 
coating breaks [64]. The application of a diamond coating 
reduced the force when drilling CFRP by 65% and when 
drilling Al by 35% for the same cutting circumstances by 
reducing drill bit wear. The material softening brought on 
by high temperatures and the drill bit geometry's automatic 
optimization could both account for this pattern [64].

When considering the hole number against thrust force, 
Kuo et al. observed 56%, 52%, and 30% increase in thrust 
force in the 10th hole compared to first hole when drilling 
Ti, CFRP, and Al panels, respectively, with DLC-coated drill 
bit [78]. The premature chipping and strong adherence of 
workpiece on the cutting edge of the drill were identified 
as the causes of the sudden increase in thrust force. Mon-
toya et al. mentioned that the thrust forces produced by both 
uncoated and diamond-coated drills steadily rise with an 
increase in the number of drilled holes in both CFRP and Al 
components, primarily because of drill bit wear [64]. Tashiro 

et al. also mentioned that when drilling CFRP/Ti6Al4V 
using TiAlCr/TiSi and TiAlN-coated cemented carbide 
drills, the thrust force rises with the number of holes [76]. 
Ghassemieh et al. found that drilling CFRP/Ti6Al4V with 
C7 (nano-crystalline AlTiN grains in Si3N4)-coated drills 
saw thrust forces increase with the number of holes. Specifi-
cally, wear increased thrust forces by about 20% in Ti and 
87% in CFRP [12].

Therefore, it can be decided that thrust force is influenced 
by factors like drill bit geometry, cutting parameters, drill bit 
material, workpiece material, and lubrication-cooling pro-
cesses, and the quantitative data of this section is summa-
rized in Table 2. Drilling Ti6Al4V panels typically requires 
significantly higher thrust force compared to CFRP panels 
due to differences in chip removal processes. Worn drill bits 
further increase thrust forces significantly. Coatings on drill 
bits affect thrust forces differently based on the workpiece 
material. For example, TiAlN-coated drills tend to produce 
lower thrust forces than uncoated drills due to their high 
hardness and reduced adhesion with aluminum chips. How-
ever, some studies have reported higher thrust forces with 
coated drills, attributed to cutting-edge sharpness. Uncoated 
drills often generate lower thrust forces initially compared 
to coated drills, as coatings can increase the cutting-edge 
radius, reducing sharpness. Cooling conditions such as MQL 
also impact thrust forces, particularly in composite drilling. 
MQL can increase humidity in the drilling area, affecting the 
tribological properties of coatings and subsequently the cut-
ting forces. Thrust forces generally increase with the number 
of drilled holes, primarily due to drill bit wear. The rate of 
increase varies among different materials and coatings. For 
instance, diamond-coated drills show a significant reduction 
in thrust forces for both CFRP and aluminum, attributed 
to reduced wear. In contrast, the thrust forces produced by 
TiAlN-coated drills tend to be higher, especially in titanium 
panels. Drill bit coatings and cooling conditions are critical 
in managing thrust forces, with specific coatings and lubri-
cation methods showing significant effects on thrust force 
magnitudes.

Fig. 9   Evolution of thrust force with number of holes using TiAlN 
and DLC-coated tools [63]

Fig. 10   Cutting edge radius of 
the (a) uncoated and (b) TiAlN/
TiN-coated drills [65]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology	

3.3 � Influence of tool coating on torque

According to Xu and Mansori, drilling CFRP/Ti stacks 
with a PVD TiAlN-coated drill resulted in slightly larger 
torque magnitudes in CFRP panels than with an uncoated 
drill, but significantly lower torque magnitudes in Ti panels. 
They added that the application of coating has less impact 
on torque than feed and speed [9]. Drilling CFRP/Ti stacks 
using AlTiN-coated, nanocomposite-coated, and uncoated 
drill bits were compared by Wang et al. [71]. Uncoated drill 
bit produced somewhat less torque in Ti panel than AlTiN 
and nanocomposite coated drill bits, despite there being no 
appreciable variation in torque throughout the testing (80 
holes). When drilling Ti/CFRP/Al panel, Kuo et al. reported 
that TiAlN/TiN-coated drills generated up to 10% less 
torque, which was consistent with the enhanced wear resist-
ance offered by the TiAlN/TiN coating at the corners [65].

According to Shyha et al., the lowest torque when drilling 
Ti/CFRP/Al was recorded in CFRP followed by Al and Ti 

with an uncoated drill [66]. This result can be attributed to 
the propensity of both aluminum and titanium chips to attach 
to drill edges and lips. Furthermore, as the test came to an 
end, the torque levels in Al, Ti, and CFRP, respectively, rose 
by a factor of 3, 4, and 5 with the used drill bits. According 
to Kuo et al., when drilling Ti/CFRP/Al with PVD DLC-
coated and CVD diamond-coated drill, the lowest torque 
is recorded in CFRP followed by Al and Ti irrespective of 
feed rate [78]. Furthermore, after 10 holes, torque in the Ti, 
CFRP, and Al sections rose by two to three times its start-
ing levels and then did not show any significant increment 
until 70 holes. According to Tashiro et al., drilling CFRP/
Ti6Al4V with a drill bit coated in TiAlCr/TiSi and TiAlN 
resulted in significantly less torque in CFRP part compared 
to titanium alloy part [76]. The torque nearly doubled in size 
in the 140th hole when the drill bit is advanced through the 
hole. The friction between the titanium alloy and the drill 
may have risen due to the drill's high wear at the 140th hole 
[76]. Additionally, in dry and mist-cooled environment, drill 

Fig. 11   Comparison of the thrust forces under two cutting environments for the CFRP panel with (a) TiAlN-coated and (b) diamond-coated 
drills and for the titanium phase with (c) TiAlN-coated and (d) diamond-coated drills [41]
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with TiAlN coating produced less torque in titanium panel 
than the drill with TiAlCr/TiSi coating. Ghassemieh con-
curred that, between the first and last (21st) holes, the torque 
of the CFRP portion increased by 50% while drilling CFRP/
Ti6Al4V using a C7-coated drill [12].

Xu et al. found that TiAlN-coated drills had lower torque 
under MQL conditions compared to dry cutting, but dia-
mond-coated drills showed the same torque under both con-
ditions due to the diamond coating's low friction coefficient. 
Under MQL at cutting speeds of 30 and 45 m/min, diamond-
coated drills generated higher torque on titanium alloy due 
to severe chip congestion, which increased friction during 
chip removal [75].

Therefore, it can be said that the presence of coatings on 
drill bits, such as PVD TiAlN, AlTiN, and nanocomposite 
coatings, can influence torque in drilling operations, but the 
effect of coatings on torque appears to be less pronounced 
than other factors like feed rate and speed. The quantita-
tive data of this section is summarized in Table 2. Torque 
levels tend to increase as drill bits wear down. The accu-
mulation of swarf on drill edges and lips can contribute to 
increased torque. The frictional interaction between drill 
bits and workpiece plays a crucial role in torque generation. 
The choice of coating can affect friction coefficients and 
subsequently impact torque levels. Additionally, the use of 
minimum quantity lubrication (MQL) can influence torque, 
with diamond-coated drills exhibiting stable torque levels 
due to their low friction coefficient.

3.4 � Impact of tool coating on temperature

To understand drilling quality of CFRP/metal stacks, it is 
crucial to recognize the thermal properties of CFRP resins. 
CFRP's matrix resin, typically an amorphous polymer, tran-
sitions through glassy, elastic, and viscous states depend-
ing on temperature, with the glass-transition temperature 
around 200 °C. At this point, epoxy resin deteriorates and 
debonds from carbon fibers [67]. Wang et al. found that 
drilling CFRP/Al stacks with diamond-coated drills resulted 
in a peak temperature of 232 °C in the CFRP layer, which 
dropped to 115 °C in the Al layer. This is due to CFRP's low 
heat conductivity causing heat buildup, while aluminum's 
high thermal conductivity allows for rapid heat dissipation 
[67].

According to Xu et al., while drilling CFRP/Ti with both 
uncoated and diamond-coated drills [74], it is seen that 
the diamond-coated drills generate comparatively lesser 
cutting temperatures than the uncoated ones, as shown in 
Fig. 12, demonstrating enhanced heat conduction at the 
workpiece–tool interface [74]. This phenomenon can be 
explained by the diamond coating's better thermal conduc-
tivity (1600–2000 W/mK), which is approximately 54–68 
times higher than that of WC (29.2 W/mK) and allows for 

rapid discharge of heat at the workpiece–tool interface. Its 
lower COF also improves tribological interaction at the 
tool–chip and workpiece–tool interface [74].

When Cao et al. used a TiAlN-coated drill bit to drill 
CFRP/Ti stack, they found that as the cutting-edge worn 
and degraded, the shearing plastic temperature of the Ti sig-
nificantly rose. Because of the frictional action between the 
fracture edge and fibers, the cutting temperature during the 
interface drilling stage exceeded the glass transition tem-
perature (Tg) at the 20th hole, with friction heat and plastic 
heat increased continuously as the number of drilled holes 
increased [73].

Therefore, it can be said that exceeding glass-transition 
temperature (Tg) can lead to resin deterioration and potential 
debonding of carbon fibers from the matrix. To prevent such 
issues, it is essential to carefully control the drilling process 
to avoid surpassing Tg. Drilling CFRP layers can generate 
significant heat due to the material's poor heat conductiv-
ity. However, the excellent thermal conductivity of metal 
allows for effective heat dissipation once the drilling process 
transitions to metal panel. Diamond-coated drills generally 
produce lower cutting temperatures compared to uncoated 
drills. The diamond coating's lower friction coefficient and 
higher thermal conductivity contribute to improved heat 
management at the tool-to-workpiece interface.

4 � Effect of tool coating on improving hole 
quality parameters

The application of the coating boosts the drill bit's corro-
sion and oxidation resistance while extending its lifespan. 
Researches have shown that the use of the coating greatly 
affects the drilled hole dimensions of composite/metal 
stacked panels in terms of geometry, linearity, delamina-
tion damage, and surface roughness [41, 68, 70, 74, 75, 
155–157]. The drill bit coating is anticipated to have small 
grains that can generate a sharp cutting edge [24, 70], good 
toughness to prevent deformation [155], high hardness to 
provide excellent wear resistance [68, 74], and reduction in 
heat generation. Each of these characteristics is essential for 
desired drill bit life, machinability, and hole quality [158]. 
The quantitative data of Sect. 4 is summarized in Table 3.

4.1 � Delamination on composite panel

Delamination in the composite panel is often a particularly 
severe failure condition in hybrid CFRP/metal stack drill-
ing because of its irreversible nature, which accounts for 
a significant percentage of component rejections in actual 
production [9]. Delamination is defined as the interlaminar 
debonding across adjacent layers of a composite. Since it 
adversely affects the fatigue life and assembly performance 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



The International Journal of Advanced Manufacturing Technology	

of composite laminates, it is thought to be the most serious 
damage [160]. Delamination results from bending strains 
between the material contact point and the drill bit [161]. 
Furthermore, under alternating loading situations, delami-
nation will spread further, eventually leading to the prema-
ture end of the life span of the composite components [41]. 
Peeling up and pushing down are the mechanisms by which 
drilling-induced delamination happens at the edge of both 
entrance and exit holes. Delamination of the CFRP layer 
can occur even with a wear-free drill due to the drill flute 
peeling off the CFRP top layer [63, 162] and AA7075 chip 
evacuation through the hole [63, 64].

D’Orazio et al. found that the delamination factor (DF) 
increased with the number of drilled holes. For the first hole 
in a CFRP/Al7075/CFRP stack, DLC-coated drills had a 
DF value about 55.5% lower and TiAlN-coated drills about 
50% lower than the last hole. A wear-free TiAlN-coated drill 
had nearly double the DF of a DLC-coated drill. This dif-
ference is likely due to the DLC coating's high hardness, 
which reduces thrust forces and enhances wear resistance 
[63]. A reduction in thrust force can significantly contribute 
to minimizing the DF, thereby enhancing the overall quality 
of hole during drilling [69]. Conflictingly, the delamination 
factor produced by diamond coated drill bit (0.17–0.3 in 
MQL condition and 0.03–0.07 in dry condition) is more than 
that produced by TiAlN-coated drill bit (0.1–0.15 in MQL 
condition and 0.03–0.05 in dry condition), according to Xu 
et al. [41]. This also demonstrates that the MQL environ-
ment promotes CFRP delamination. According to Montoya 
et al., delamination does not occur all the way around the 
hole entry, but rather in regions where a 45° angle is formed 
by the direction of the chip movement (caused by the drill's 
rotation) and the fiber orientation [64].

Zhong et al. found that the exit delamination produced by 
an uncoated drill bit when drilling a CFRP/Al/CFRP stack 
was approximately 4 to 8 times larger than that achieved 
with a TiAlN-coated drill bit as shown in Fig. 13 [69]. This 
significant difference is due to the increased hardness of the 
TiAlN-coated drill bit. Additionally, Zhong et al. noted that 
the DF at the hole exit was greater for the uncoated drill bit 
compared to the entrance, and this variation was less pro-
nounced when using the TiAlN-coated drill bit. A study by 
Bayraktar and Turgut contradicts these findings, indicating 
that uncoated drills outperformed TiN and TiAlN-coated 
HSS drills in terms of minimizing the DF [72]. Further-
more, in terms of delamination, the TiN and TiAlN-coated 
drills performed similar to each other. This discrepancy is 
explained by the coating's ability to dull the cutting edge, 
making it more challenging for the drill to penetrate the 
material [72]. Similarly, Xu and Mansori concurred that an 
uncoated drill with a DF value of 1.15 produced slightly 
better delamination quality in comparison to a TiAlN-coated 
drill with a DF value of 1.206 when drilling CFRP/Ti [9]. 
Jebaratnam et al. found that drilling CFRP/Al7075-T6 with 
uncoated WC tools consistently exceeded the industry 
delamination factor (DF) limit of 1.206. In contrast, ta-C 
coated tools drilled up to 90 holes with exit delamination 
below this threshold, thanks to the coating's high hardness 
and strong bond strength, which reduce delamination [163]. 
However, ta-C + Cr coated tools reached a DF below 1.206 
for only 40 holes before surpassing the tolerance limit. The 
lower hardness and bond strength of ta-C + Cr coating led 
to faster wear and higher DF due to increased thrust force 
[163].

Xu and Mansori found that drilling CFRP → Ti with 
a TiAlN-coated drill bit resulted in more precise CFRP 
hole shapes and less fiber/matrix damage compared to the 

Fig. 12   Comparison of the maximum cutting temperatures obtained by the IFTC with the temperature compensations for different drill bits and 
cutting sequences under varying feed rates (Vc = 20 m/min) [74]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Ti → CFRP order. The maximum delamination factor was 
1.2 for CFRP → Ti and 1.3 for Ti → CFRP [9]. Because of 
the underlying Ti alloy's support, which reduces workpiece 
dynamics and laminate deflection, the exit CFRP delami-
nation is effectively controlled, preventing it from getting 
worse as drill bit wear progresses [73, 74]. Meanwhile, the 
continual presence of high-temperature Ti alloy chips caused 
by the worn cutting edge close to the hole's edge causes ther-
mal–mechanical erosion of the CFRP layers at the interface 
[73, 164, 165].

On the whole, delamination is a critical concern in the 
drilling of hybrid FRP/metal stack-up panels, as it represents 
a severe and often irreversible failure mode. The type of drill 
bit coating plays a significant role in mitigating delamina-
tion. Diamond-like carbon (DLC) coatings and TiAlN coat-
ings have demonstrated their ability to reduce delamination, 
primarily due to their high hardness, which can spread and 
reduce thrust forces, thereby minimizing the delamination 
factor. Some studies report that uncoated drills perform bet-
ter, and this discrepancy may be attributed to cutting-edge 
sharpness. The sequence in which drilling occurs, whether 
from CFRP to metal or vice versa, can also influence the 
extent of delamination.

4.2 � Burr formation on metal panel

The occurrence of the burr defect in the Ti panel poses a 
significant challenge, particularly when compared to other 
forms of surface damage in metallic materials. This issue 
often necessitates additional steps such as disassembly, 
deburring, and re-assembly of the stacks, as pointed out by 
Xu et al. [9]. The deburring process alone can consume up 
to 40% of the total cutting time and contribute to roughly 
30% of the overall assembly cost if burrs are formed at the 

exit of the drilled hole, as highlighted by Sui et al. [166]. 
Niknam et al. state that the ductility, hardness, and tensile 
yield strength of the material are the primary mechanical 
parameters that impact the burr's shape [167].

Hassan and Razali reported that drilling CFRP/Al stacks 
using a TiAlN-coated drill bit delivered superior drilling per-
formance in comparison to an uncoated drill bit, particularly 
in terms of burr height, which was maintained below 80 µm, 
thus obviating the need for a deburring process [168]. This 
finding was corroborated by Kuo et al. when they drill Ti/
CFRP/Al stack with a TiAlN/TiN-coated drill bit [65]. They 
additionally noted that the maximum entrance burr height 
produced by uncoated and TiAlN/TiN-coated drill bits was 
0.2 and 0.15 mm, respectively, while the exit burr height 
was 0.3 mm for the uncoated drill bit and 0.15 mm for the 
TiAlN/TiN-coated drill bit at the end of the test. Hassan and 
Razali found that burr height increased for both uncoated 
and TiAlN-coated drills from the first to the sixtieth hole. 
However, burr height for uncoated drills surged from 128 
to 327 µm after the 70th hole, while TiAlN-coated drills 
maintained a maximum burr height of under 100 µm until 
the 81st hole. The TiAlN coating reduced aluminum adhe-
sion at the cutting edge, preventing build-up layers (BUL) or 
build-up edges (BUE) [168]. Xu et al. found that uncoated 
carbide drills produced higher drilling temperatures and 
larger burrs when machining CFRP/Ti stacks due to poor 
frictional contact and low thermal conductivity. This led to 
reduced rigidity in the exit titanium layers. In contrast, dia-
mond-coated drills consistently generated lower burr heights 
in the titanium layers due to their high wear resistance, better 
heat dissipation, and lower mechanical loads, regardless of 
the process parameters [74].

Xu et al. also made note of the impact of friction coef-
ficient and thermal conductivity in relation to the diamond 

Fig. 13   Delamination factor results for holes exit [69]
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and TiAlN coating when drilling CFRP/Ti stacks. According 
to Fig. 14, the burr height produced by TiAlN and diamond 
coated drill varies from 65 to 164 µm and 33–130 µm under 
dry condition. They found that the diamond coating, with 
its lower friction coefficient and higher thermal conductiv-
ity, played a role in reducing the temperature growth during 
drilling [75]. Furthermore, TiAlN-coated drills, with their 
poor thermal conductivity, accumulated heat at the drill 
bit–work interface, causing titanium expansion and burr for-
mation [75]. Under MQL conditions, vegetable oil reduced 
drilling temperatures making titanium chips harder and more 
brittle, leading to lower burr heights (40–75 µm) and less 
sensitivity to feed rate changes. In contrast, diamond-coated 
drills produced higher burr heights (80–184 µm) under MQL 
due to titanium chip congestion, which increased local cut-
ting temperatures and friction, exacerbating burr formation. 
[75]. Jebaratnam et al. mentioned that ta-C + Cr-coated tool 
produced a minimal burr height of 96.4 µm during drill-
ing of CFRP/Al7075-T6 compared to uncoated and ta-C 
coated tools. The findings indicate that the ta-C + Cr-coated 
tool's lower coefficient of friction (COF) is what led to the 
tool's reduced burr height development [163]. Reduced COF 
causes the tool to rub against the workpiece surface less, 
which lowers temperature generation and reduces ductility at 
the hole edge, which in turn reduces the burr formation. The 
tool coated with ta-C has the highest coefficient of friction 
and generated the highest average burr height of 126.75 µm 
[163].

In their drilling experiments on a Ti/CFRP/Al stack, 
Shyha et al. measured entrance and exit burr heights. Their 
findings indicated that the CVD diamond-coated drill bit 
formed the best burr height results, followed by the uncoated 
drill bit, while the C7-coated drill bit produced the largest 
burr height among all [68]. They also noted that the entrance 

and exit burr heights of the top Ti panel did not show sig-
nificant differences regardless of the drill bits used. This is 
because the burr height tends to be higher in more ductile 
materials [169]. Furthermore, the entrance burr height in 
Al panel was smaller than the exit burr height of that panel, 
regardless of the drill bits. This phenomenon was explained 
by the compaction of the CFRP layer above, which led to 
lower entrance burr heights, and the unsupported condition 
of the bottom Al panel, which resulted in higher exit burr 
heights [68]. Xu et al. mentioned in their study on CFRP/
Ti6Al4V stacks that maximum temperatures were typically 
found at the exit side of the titanium panel, leading to more 
severe drilling-induced burrs at the exit side compared to 
the entry side [74].

Xu and Mansori explored the influence of cutting 
sequence on burr formation [9]. They observed that a TiAlN-
coated drill typically resulted in higher burr widths (320 µm) 
compared to an uncoated drill (210 µm) when operating in 
the CFRP → Ti cutting sequence, especially under high-
cutting-speed conditions. Additionally, they found that 
Ti → CFRP drilling produced fewer defects when high feed 
rates were applied. This difference was because of the sup-
portive role of the bottom CFRP panel, which increased the 
stiffness of the exit Ti layer making it easier to shear the 
bottom surface layers and contributed to reducing the exit 
Ti burr defect. Xu et al. also agreed with it while drilling 
from Ti → CFRP which normally resulted in far lesser burr 
heights compared to the CFRP → Ti drilling order [74].

Considering all these things, burr formation is a signifi-
cant challenge in the drilling of hybrid CFRP/metal stacks, 
often requiring additional post-processing steps and increas-
ing both machining time and assembly costs. Burr height 
and formation are influenced by various factors, including 
material properties, drill bit coatings, cutting conditions, and 

Fig. 14   The burr heights produced by the TiAlN-coated and diamond-coated drills at the fixed cutting speed of 30 m/min. (a) The dry cutting 
condition. (b) The MQL condition [75]
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drilling sequences. Temperature distribution during drilling 
can contribute to burr formation, with maximum tempera-
tures often observed at the exit side of the metallic phase, 
leading to more severe exit burrs. Material properties such 
as ductility, hardness, and tensile yield strength play a sig-
nificant role in determining the shape and height of burrs. 
Coated drill bits, such as TiAlN and diamond-like carbon 
(DLC), have been shown to reduce burr height compared 
to uncoated drills. Coatings with higher hardness and bet-
ter thermal conductivity can contribute to minimized burr 
formation. Drilling from metallic layer toward FRP pro-
duces better burr results due to the supportive role of the 
underlying FRP layer. The choice of cutting environment, 
such as minimum quantity lubrication (MQL), can affect 
burr height. The application of appropriate cooling and 
lubricating agents can reduce burr height by altering chip 
characteristics. High thermal conductivity and low friction 
coefficients, often associated with diamond coatings, can 
help reduce burr height.

4.3 � Hole wall roughness

According to Batzer et al., the material being drilled, the 
machining conditions, and the type of drill used all have a 
major influence on the hole surface roughness [170]. Fur-
thermore, the inhomogeneous properties of the composite 
part in comparison to the metal piece make it tough to mini-
mize the hole surface roughness [171, 172].

According to Zitoune et al., the usage of nc-CrAlN/a-
Si3N4 nano-coated drill bits resulted in an improved sur-
face quality on Al and CFRP holes [70]. They obtained a 
roughness of 0.43–0.94 µm with an uncoated drill bit and 
0.35–0.68 µm with a nc-CrAlN/a-Si3N4 nano-coated drill bit 
at a constant speed of 2750 rpm. This difference is mostly 
due to drill bit polishing, particularly prior to coating (PVD) 
for increased nanocrystalline layer bonding [70]. Montoya 
et al. observed that the roughness of hole walls in the initial 
50 holes remained consistent for uncoated and diamond-
coated drill bits as shown in Fig. 15. Uncoated drills showed 
increased hole roughness with more drilled holes, reaching 
1.4 µm for aluminum and 6.5 µm for CFRP. Diamond-coated 
drills, however, maintained lower roughness, under 0.6 µm 
for aluminum and 2.8 µm for CFRP. This disparity is due to 
uncoated drills' wear and sharp edge deterioration, which 
initially resulted in smoother holes but became less effec-
tive over time, leading to higher roughness [64]. Kuo et al. 
corroborated this statement and added that flank wear does 
not directly impact the surface roughness of metal panels, 
whether they are aluminum (Al) or titanium (Ti) [65]. Addi-
tionally, Zitoune et al. obtained similar roughness values 
ranging from 1.6 to 4.6 µm when using nc-CrAlN/a-Si3N4 
nano-coated drill bit, but observed higher roughness lev-
els between 3.2 and 6.9 µm with uncoated drill bits when 

drilling CFRP panel of CFRP/Al stacks [70]. This discrep-
ancy in roughness is attributed to the non-uniform compo-
sition and layer-by-layer stacking arrangement inherent to 
CFRP, which results in a larger standard deviation in hole 
surface roughness compared to Al7075-T6 panels [70]. This 
high deviation is also due to the presence of projecting fib-
ers, fractures, and epoxy debris during drilling [173]. The 
deterioration of the CFRP hole surface may also be due to 
the scratches that occurred during the evacuation of chips 
produced while drilling Al7075-T6 panel [170, 174]. How-
ever, Shyha et al. have noted that the damage caused on 
CFRP hole surfaces by Al chips during drill bit feed/retrac-
tion can be mitigated by wet cutting [68]. Achieving minimal 
surface roughness in composites requires the dust generated 
during drilling to be fine, as this leads to improved surface 
roughness outcomes. Increased temperature in cutting zone 
also causes CFRP roughness. As the temperature increases 
during drilling, the bond between the fiber and matrix weak-
ens, resulting in interfacial debonding of the fiber and resin. 
Consequently, the fiber is more easily separated from the 
matrix, leaving non-integrated fibers on the machined sur-
face. This, in turn, contributes to an increase in hole surface 
roughness [67]. This scenario is not concentrated throughout 
the surface, but mostly at 135° between fiber alignment and 
the direction of drill bit movement. The occurrence of pit-
ting phenomenon at the stacking sequence of 135° (− 45°) 
is attributed to the negative cutting direction angle. In this 
context, instead of being cut, the uncut fibers are pulled out 
[64, 175]. This phenomenon can be elucidated by consider-
ing that fibers oriented in the − 45° direction tend to experi-
ence significant elastic bending rather than shearing due to 
the pressure exerted by the drill cutting edge [176].

Shyha et al. when drilling Ti/CFRP/Al found that the hole 
surface roughness of the aluminum panel remained below 
0.2 µm for 310 holes, unaffected by drill wear or coating loss 
when using C7 and CVD diamond-coated drills in wet con-
ditions. In contrast, the titanium panel's roughness increased 
from 0.3 to 0.9 µm over the same number of holes, while the 
surface roughness of CFRP with uncoated drills rose to 5 µm 
from 0.5 µm [68]. Chip redeposition on titanium increased 
roughness due to material trapping and pressure-welding, 
whereas aluminum, being less prone to adhesion and posi-
tioned at the bottom of the stack, showed minimal chip 
adhesion. Surface roughness for CFRP remained at 3 µm 
for CVD diamond-coated, 9 µm for C7-coated, and 4.5 µm 
for uncoated drills for the first 200 holes. Furthermore, the 
surface quality deteriorated quickly under spray mist condi-
tions [68]. In a study by Ghassemieh, it was mentioned that 
C7-coated drills achieved a surface roughness of less than 
2 µm in CFRP and less than 0.4 µm in titanium panels for 
all 15 holes under dry conditions [12].

When working with CFRP/Al/CFRP stacks, Zhong 
et al. found that the surface roughness of holes machined 
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by TiAlN coated drills was superior to those drilled with 
uncoated drills [69]. This improvement is explained by the 
fact that, in comparison to uncoated drills, coated drills cre-
ate less surface cavities on the CFRP hole walls. A similar 
finding was corroborated by Xu and Mansori when drill-
ing CFRP/Ti6Al4V using TiAlN-coated drill bits [9]. The 
TiAlN coating exhibited a high level of hardness, result-
ing in reduced thrust forces and enhanced drill durability, 
ultimately contributing to a smoother hole surface finish 
[69]. Mathavan et al. mentioned that the average hole sur-
face roughness of 100 holes drilled on CFRP panel while 
drilling CFRP/Al7075-T6 stack by uncoated, ta-C-coated, 
ta-C + Cr-coated, and ta-C + Ti-coated drills were 2.91, 2.4, 
2.31, and 2.15 μm, respectively, which is below the indus-
trial accepted limit of 3.2 μm [135]. The low roughness com-
pared to uncoated tool is because of the lubrication effect of 
the coatings. Reduced heat production due to high lubrica-
tion leads to reduced fiber matrix debonding and reduced 
surface roughness in composite panels [135].

However, as indicated by Brinksmier and Janssen, the 
use of coated drill bits does not seem to have a discern-
ible impact compared to uncoated drill bits on the damage 
inflicted on CFRP due to the erosion phenomenon caused 
by sharp chips interacting with the material [2]. Similarly, 
Kuo et al. reported that drilling Ti/CFRP/Al with a TiAlN/
TiN-coated drill bit did not result in a discernible improve-
ment in hole surface roughness in comparison to an uncoated 
WC drill bit [65]. In both cases, the surface roughness values 
for the Ti, CFRP, and Al layers fell within the respective 
ranges of 0.35–0.95 µm, 0.53–1.4 µm, and 0.11–0.5 µm for 
both types of drill bits. Moreover, the surface roughness of 
the holes made in the aluminum section did not appear to 
be affected by the application of coatings, such as TiAlN, 
TiAlN/AlN, and MoS2, as demonstrated by Kalidas et al. 
[177]. Mathavan et al. also determined that the average hole 
surface roughness of holes drilled on aluminum alloy pan-
els using ta-C-, ta-C + Cr-, and ta-C + Ti-coated drills was 

around 1.76 µm, while holes drilled using uncoated drills 
had an average of 1.43 µm [135]. It not only shows the inef-
fectiveness of coating on the hole surface roughness while 
drilling Al panel, but also, it produced a higher hole surface 
roughness value which is above the industrially accepted 
limit of 1.6 μm in Al panel.

The use of diamond-coated drills results in far better hole 
surface characteristics with less damage caused by drilling. 
This improvement is primarily attributable to the lower drill-
ing forces and temperatures generated by diamond-coated 
drills, which effectively mitigate the mechanical and ther-
mal impacts during stack drilling. As Fig. 16a illustrates, 
in the CFRP → Ti drilling order, very slight erosion dam-
age is seen on the CFRP hole surfaces because of the dia-
mond coating's improved performance, which lessens the 
negative impacts of titanium chip ejection [74]. The badly 
cut CFRP surfaces with cavities are mostly localized at 
the − 45° plies, as Fig. 16a indicates. Moreover, when drill-
ing in the opposite order (Ti → CFRP) as shown in Fig. 16b, 
only small amounts of thermally induced damage are found 
on the composite hole surfaces. This phenomenon may be 
explained by the intrinsic qualities of the diamond coating, 
such as its high heat conductivity, low friction coefficient, 
and high hardness, which all work together to limit drill bit 
wear and lessen the mechanical and thermal consequences 
of the chip removal process [74]. Figure 16b further shows 
that the extremely heated drill edges that come into contact 
with the composite during drilling are the cause of the signs 
of pyrolysis, fuzzing, degradation, and matrix softening that 
are found within the drilled composite holes.

In general, coated drill bits, such as nc-CrAlN/a-Si3N4 
nano-coated, ta-C-coated, or diamond-coated drills, yield 
superior surface quality compared to uncoated drills. Coat-
ings contribute to reduced wear and better hole wall finish. 
Diamond-coated drills exhibit low friction coefficient, high 
hardness, and high thermal conductivity to improve the sur-
face finish. The sequence in which the stack is drilled can 

Fig. 15   Roughness Ra for the (a) CFRP part and (b) Al part using (A) uncoated and (B) diamond coated drill bits [64]
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impact surface roughness. Drilling from metallic to compos-
ite materials tends to cause more damage to the composite 
hole surfaces due to chip evacuation issues. Efficient evacu-
ation of chips, especially in metallic-to-composite drill-
ing sequences, plays a crucial role in minimizing surface 
damage. Inadequate chip removal can lead to abrasion and 
increased surface roughness. Elevated temperatures gener-
ated during drilling, particularly in composite materials, can 
lead to thermal degradation, microcracks, and matrix soften-
ing, contributing to increased roughness. It is worth noting 
that the application of cooling can have a significant impact 
on surface quality.

4.4 � Hole diameter error

The main challenge encountered when drilling stack-up 
materials is the varying diameters between the materials 
[178]. Since various materials have varying moduli of elas-
ticity, which can cause different kinds of elastic deformation, 
it is challenging to maintain consistent diameters between 
the stacked materials [179]. Misalignment between hole 

and drill bit sizes can necessitate costly repairs and affect 
assembly quality, with oversized holes risking looseness and 
undersized holes causing component failure due to concen-
trated pressures [180].

When drilling CFRP/AA7075/CFRP stack, D’Orazio 
et al. mentioned that, though both DLC- and TiAlN-coated 
drills showed increasing variation in diameter between entry 
and exit holes, TiAlN-coated drills had the trend with more 
pronounced difference as shown in Fig. 17 [63]. They fur-
ther mentioned that the hole diameter decreased through 
the layers, with the exit diameter being significantly smaller 
than the entry diameter and the size of AA7075 hole diam-
eter was between the CFRP layers. Aluminum chips' rota-
tion causes greater entry diameter due to abrasion, while 
improved drill guiding reduces exit diameter [63]. Drilling 
temperature which is lower in the bottom CFRP layer due to 
better heat transfer and different elastic moduli of AA7075 
(70.6 GPa) and CFRP (53 GPa) also contributed to the 
diameter discrepancy [63]. A similar incident of decrease 
in hole diameter with depth was reported by Kuo et al. while 
drilling Ti6Al4V/CFRP/AA7050 stack panel with uncoated 

Fig. 16   SEM morphologies of the drilled composite hole walls when using the diamond-coated drill under the (a) CFRP → Ti sequence 
(Vc = 65 m/min and f = 0.06 mm/rev) and (b) Ti → CFRP sequence (Vc = 65 m/min and f = 0.06 mm/rev) [74]
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and TiAlN/TiN-coated WC twist drills [65]. Contradictorily, 
Shyha et al. discovered that while drilling a Ti/CFRP/Al 
stack using diamond- and C7-coated drill bits under wet con-
ditions, the diameter of the entry Ti panel and exit Al panel 
are bigger than that of the mid CFRP layer [68]. This situ-
ation might be caused by the fact that fibers tend to shrink 
when exposed to moist conditions. Conflictingly, Pardo 
et al. discovered that when cutting a CFRP/Al stack panel 
with AlTiCrN-coated drill bit, the interface diameters of the 
aluminum and CFRP holes were consistently bigger than 
the entry CFRP and exit Al holes [77]. Additionally, it was 
discovered that the interface diameters of the holes made 
in aluminum were consistently marginally larger than those 
made in CFRP. There are two potential causes for this. First 
off, the two materials' distinct elastic moduli result in vary-
ing degrees of elastic recovery [2, 68, 181]. Second, when 
the tool contacts with the lower Al layer, there's a chance of 
tool skidding, which causes the aluminum to have a little 
bigger entry diameter and the CFRP to have a somewhat 
larger exit diameter [77]. Conflictingly, Xu et al. pointed 
out that while using both TiAlN- and diamond-coated drill 
bits, the exit diameters of the CFRP panel are significantly 
bigger than those recorded in the entrance and middle areas 
[75]. Under the MQL condition, the disparity between the 
entrance and exit CFRP hole diameters is diminished and 
both diameters approach the nominal hole [75].

According to Pardo et al. and Perez et al., the sizes of 
the holes drilled in Al7075-T6 are usually greater than 
those drilled in CFRP because of the thermal expansion 
that occurs during the drilling process, irrespective of 
whether coated or uncoated drill bits are used [77, 182]. It 
is because, when drilling the Al7075-T6 panel, aluminum 
chips have a propensity to jam at the flute, increasing drilling 

temperature. As a result, the large diameter in aluminum 
panel is more likely to occur in a dry environment [77, 183]. 
Dry cutting of Ti6Al4V panel also encourages oversized 
hole diameters than the nominal one because of the titanium 
alloy's thermal expansion. The MQL condition creates holes 
with diameters, which are smaller than the nominal diameter. 
It is because, when drilling composite plates under cooling, 
the fibers have a tendency to contract, resulting in a smaller 
hole in the composite plate than the corresponding hole in 
the metal section [75]. However, there are some instances 
where the diameter of the hole in CFRP is bigger than that 
in Al7075-T6 either with coated or uncoated drill bits [64, 
67, 184]. Zitoune et al. speculate that this may be because of 
more drill bit stability while drilling through the bottom Al 
layer [70]. Additionally, it was noticed by Montoya et al. that 
continuous chip production during the drilling of metal can 
lead to the chip twisting along the drill body and obstruct the 
chip evacuation [64]. This causes hot, sharp chips to form 
in the hole that cannot be removed smoothly, increasing the 
size of the CFRP holes and lowering the quality of the sur-
face of the CFRP holes [152, 185].

According to Montoya et al., the relationship between the 
number of holes and the dimension of the holes is mostly 
steady while drilling CFRP/Al stacks with a drill bit of 
6-mm diameter [64]. This stability is observed in the range 
of 5.965 to 5.98 mm for uncoated and diamond-coated drill 
bits, as well as in the range of 5.96 to 5.995 mm for TiAl-
CrN-coated drill bits and 5.955 to 5.98 mm for AlTiSiN-
G-coated drill bits. Tashiro et al. noted that when drilling 
CFRP/Ti panels using TiAlN and TiAlCr/TiSi-coated drills, 
the hole size remained stable in the Ti panel but increased 
in the CFRP panel as the number of holes increased [76]. In 
contrast, Shyha et al. discovered that, regardless of whether 

Fig. 17   Evolution of hole diameter with number of holes using (a) DLC-coated drill and (b) TiAlN-coated drill [63]
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coated or uncoated drill bit is used, the hole diameter 
decreased with an increase in the number of holes when 
performing wet cutting of Ti/CFRP/Al stacks [68]. This 
pattern is attributed to the material loss caused by drill bit 
wear evolution as the number of holes increases. They also 
stated that the first hole made by uncoated drill bit was less 
than the nominal diameter, whereas the first hole made by 
diamond- and C7-coated drill was larger than the nominal 
diameter. According to D’Orazio et al., the DLC-coated drill 
bit created undersized holes in both CFRP and AA7075 pan-
els, but TiAlN-coated drill bit initially created large holes, 
which eventually reduced to generate undersized holes after 
midway in both CFRP and AA7075 panels due to drill bit 
wear [63]. Conversely, Wang et al. observed that the holes 
created by the diamond-coated cemented carbide drill bit in 
both CFRP and Al7075-T651 were large throughout the trial 
[67]. Similarly, Tashiro et al. discovered that holes drilled 
with both TiAlCr/TiSi- and TiAlN-coated drills are large in 
both CFRP and Ti panels [76]. They added that, in CFRP 
panels, the deviation with TiAlN-coated drill is greater than 
that with TiAlCr/TiSi-coated drill, but in Ti panels, the devi-
ation with TiAlN-coated drill is slightly lower than that with 
TiAlCr/TiSi-coated drill. Additionally, the holes drilled in 
Ti panels by both drills are smaller than those drilled in 
CFRP panels [76]. Xu and Mansori found that hole sizes in 
both CFRP and Ti panels were oversized (nominal diam-
eter = 6.35 mm) in CFRP/Ti drilling, regardless of whether 
uncoated or TiAlN coated drill bit is used [9]. The TiAlN-
coated drill bit performed better, with a CFRP diameter 
variation of only 0.05 mm compared to 0.15 mm with the 
uncoated drill bit. This is attributed to the TiAlN coating's 
ability to maintain sharp cutting edges and resist wear. While 
diameter variation in Ti panel holes were consistent for both 
drill bits, the uncoated drill bit produced larger CFRP holes, 
whereas the TiAlN-coated drill bit produced varying hole 
sizes in the CFRP panel [9]. Pardo et al. also discovered 
that while drilling CFRP/Al using TiAlCrN-coated drill bit, 
all of the holes created were substantially larger than the 
nominal diameter of the tool used (15 mm) [77]. Mathavan 
et al. reported that the average stack-up diameter error for 
holes drilled with ta-C + Ti, ta-C + Cr, ta-C, and uncoated 
tools are 20.58, 16.21, 17.24, and 13.28 µm, respectively. 
The increased error in coated tools is due to the added diam-
eter from the coating and, specifically for ta-C + Ti, the high 
chemical affinity and adhesive tendency of titanium, which 
causes chip accumulation at the cutting edges. This issue is 
exacerbated as the Ti dopant is exposed due to wear, increas-
ing the diameter error [135].

When considering the drilling progression, D’Orazio 
et al. measured the diameter difference in dry conditions 
after drilling the 170th hole, which approached a value of 
roughly 32 µm with the DLC-coated drill bit and around 
58 µm with the TiAlN-coated drill bit when drilling CFRP/

Al7075/CFRP stack panels [63]. Montoya et al. showed that 
uncoated and diamond-coated drill bits produced 9-µm toler-
ance holes even at the 250th hole, but TiAlCrN- and AlTi-
SiN-G-coated drill bits produced 18 µm tolerance range at 
the 75th hole when drilling CFRP/Al7010 stack panels [64]. 
Shyha et al. mentioned that diamond-coated drill generated 
the smallest diameter difference from start to finish, followed 
by C7-coated and uncoated drill bits that caused the greatest 
diameter difference while cutting Ti/CFRP/Al stack panels 
[68]. Kuo et al. found that TiAlN/TiN-coated drill bits pro-
duced more accurate hole diameters with a maximum vari-
ation of 0.02 mm from the nominal size when drilling Ti/
CFRP/Al stacks, compared to uncoated drill bits (all up to 
180 holes). This was due to a 33% reduction in wear at the 
coated drill bits' outer edges. They noted that coating did not 
affect hole diameter variation at low feed rates but did reduce 
variations at high feed rates. The primary factor influencing 
hole diameter in both CFRP and Ti layers was the drill bit 
coating, with PCRs of 64.5 and 57.5%, respectively [65]. 
D’Orazio et al. used a third-degree polynomial regression 
model to determine an inverse relationship between hole 
diameter and drill bit wear [63].

On the whole, the type of drill bit coating used has a sig-
nificant impact on hole diameter control. Diamond-coated 
and various TiAlN-coated drill bits tend to produce more 
consistent hole diameters compared to uncoated drill bits. 
Coatings contribute to maintaining sharp cutting edges and 
reducing wear, which in turn improves diameter accuracy. 
Drill bit wear over the course of multiple holes can impact 
hole diameter accuracy. As drill bits wear down, hole diam-
eters may deviate from the nominal size. Variations in drill-
ing temperatures can influence hole diameters, with some 
materials expanding or contracting due to heat generated 
during the drilling process. Thermal effects can cause com-
plex diameter changes, especially in composite materials.

4.5 � Hole integrity errors

Hole circularity is the property of a surface where all of its 
points are intersected by planes perpendicular to axes that 
are equally spaced from those axes [186]. Circularity can be 
determined using the geometric tolerance that indicates how 
close a piece of a cylindrical part is to a true circle [187]. 
It is an important parameter for controlling the maximum 
allowed circularity error of the circular part. Although the 
number of researchers who study about circularity error 
when drilling stack-up panel is very limited and it has not 
received as much attention as surface integrity, the perfor-
mance of machined items is greatly affected by the circular-
ity of the drilled holes [188].

Kuo et al., when considering hole cylindricity, discovered 
that uncoated drills caused a maximum cylindricity error 
of 150 µm, whereas TiAlN/TiN-coated drill bits caused a 
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maximum cylindricity error of 100 µm when drilling Ti/
CFRP/Al stack [65]. Shyha et al. discovered that the CVD 
diamond-coated drill made better circularity at the end of 
the cutting process (156th hole) than the uncoated drill bit, 
whereas the C7-coated drill generated better circularity 
at the beginning of the cutting procedure [68]. Kuo et al. 
showed decreasing hole circularity with stack depth for Ti/
CFRP/Al panel, with average circularity errors in Ti, CFRP, 
and Al layers ranging from 53 to 121 µm, 33 to 109 µm, 
and 25 to 78 µm, respectively [65]. They found that drill bit 
coating significantly impacted the Ti layer's hole diameter 
at 5% PCR level in ANOVA, but no factors significantly 
affected the out-of-roundness in the CFRP and Al layers. 
The trilobed hole shapes in the Ti layer were likely caused 
by drill’s helical wander due to longer chisel edges or defects 
in drill geometry. According to Shyha et al., hole circular-
ity variations in Ti, CFRP, and Al layers were up to 78, 39, 
and 53 µm, respectively, when drilling Ti/CFRP/Al under 
wet conditions [68]. They discovered that as the testing 
advanced, the circularity and cylindricity improved. Accord-
ing to Mathavan et al., the average circularity error values 
were attained when cutting CFRP/Al7075-T6 with uncoated, 
ta-C-coated, ta-C + Cr-coated, and ta-C + Ti-coated drill bits 
were 14.82, 16.16, 15.36, and 16.1 µm, respectively, on alu-
minum alloy panel and 15.16, 15.48, 15.1, and 13.96 µm, 
respectively, on CFRP panel [135]. The circularity was well 
within the statistical limits and was not affected much by the 
coating application in their case. According to Xu and Man-
sori, the circularity error produced by TiAlN-coated drill 
bit (6–14 µm) in Ti panel was greater than that produced by 
uncoated drill bit (4–8 µm) when drilling CFRP/Ti panel 
in CFRP → Ti sequence [9]. The circularity error gener-
ated during Ti → CFRP drilling with TiAlN coated drill bit 
was even greater (9–28 µm). Also, the circularity error in 
CFRP panel was greater than that in Ti panel irrespective 
of the drill bit used [9]. Xu et al. found that average cylin-
dricity errors for holes in CFRP and titanium were higher 
with TiAlN-coated drills than with diamond-coated drills. 
Furthermore, MQL cooling reduced cylindricity errors in 
CFRP by 16.11% for TiAlN and 15.08% for diamond coat-
ings. However, during titanium drilling, MQL increased 
cylindricity errors by 28.03% for TiAlN and 106.54% for 
diamond-coated drills, likely due to cooling shrinkage from 
MQL application [75]. Table 4 shows the summary of the 
work done so far by several researchers in terms of analyzed 
outputs under various coating conditions. This table can be 
used to compare the results on hole quality based on the 
application of different coatings based on various machin-
ing parameters.

Considering all these things, the type of drill bit coat-
ing has a notable impact on hole circularity. Coated drill 
bits, such as TiAlN/TiN or diamond-coated drills, tend 
to produce better circularity compared to uncoated ones. 

Circularity errors can vary between different materi-
als within the stack-up panel and the choice of drilling 
sequence can also influence the results. In some cases, 
circularity errors may vary with the depth of the stack, 
indicating the need for careful consideration when drill-
ing deep stacks. Some studies have shown that circularity 
and cylindricity tend to improve as the drilling process 
progresses. This suggests that initial deviations may be 
reduced through the course of drilling, possibly due to 
tool stabilization.

5 � Conclusion

The use of hybrid composite/metal stack panels in aircraft 
manufacturing addresses limitations of traditional materi-
als, with coated drill bits offering essential solutions for 
effective drilling. Coatings reduce friction, lower tempera-
tures, and enhance hole quality, supporting manufacturing 
efficiency and reliability. Ti-based (e.g., TiN, TiAlN) and 
diamond coatings improve drill bit durability by increas-
ing wear resistance and heat tolerance. Diamond coatings, 
notably CVD diamond, are optimal for hard materials like 
CFRPs, while DLC coatings with Ti or Cr layers add wear 
resistance and low friction.

When drilling CFRP/Ti or CFRP/Al stacks, varying 
wear mechanisms emerge: CFRP phases cause abrasion 
and chipping, while metal phases lead to adhesion, dif-
fusion, and fracture due to metal properties. Coatings 
like DLC and nanocomposite TiAlN help mitigate these 
issues, though their effectiveness depends on drilling con-
ditions. Diamond coatings manage heat efficiently but may 
face failure at high temperatures. Proper coating selec-
tion and process optimization are critical for extending 
drill bit life, ensuring hole quality, and reducing costs 
in CFRP/metal stack drilling operations. Thrust force in 
drilling is influenced by factors like drill geometry, mate-
rial, coating, and cutting parameters. In composite/metal 
stacks, such as Ti6Al4V and CFRP, thrust force is higher 
in titanium due to elastoplastic chip formation, while 
CFRP chips break through brittle fracture. Coated drill 
bits—like diamond, TiAlN, and DLC—generally reduce 
thrust forces by enhancing hardness and reducing fric-
tion, though increased cutting-edge radius from coatings 
can occasionally raise forces. Proper coating selection 
and wear management are essential for minimizing thrust 
force in composite/metal stacks. Coatings like PVD TiAlN 
and AlTiN have minor impacts on torque, which is more 
affected by feed rate and speed. Coated drills can reduce 
torque, particularly in titanium, though it rises with wear 
and chip buildup. Minimum quantity lubrication (MQL) 
can stabilize torque, with diamond-coated drills perform-
ing well due to low friction. Temperature management is 
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critical, especially for CFRP, where excessive heat can 
degrade resin and cause fiber debonding. Diamond-coated 
drills help control temperatures by reducing friction and 
enhancing heat dissipation, improving overall performance 
and quality in drilling CFRP/metal stack assemblies.

Delamination in CFRP/Ti stack drilling is a critical failure 
mode that impacts component quality, fatigue life, and per-
formance, often leading to high rejection rates. It occurs at 
both entrance and exit holes due to bending strains and chip 
evacuation. Drill bit coatings affect delamination, with DLC-
coated drills typically showing lower delamination factors 

Table 4   Detail of outputs examined in the past using coated tools for stack material drilling

Workpiece Drill bit Coating Parameters Analyzed outputs Author

Ti-6Al–4 V/CFRP/
AA7050

WC twist drills PVD-coated TiAlN/TiN, 
uncoated

0.05 and 0.08 mm/rev 1. Drill bit life
2. Hole diameter accu-

racy

[65]

Ti-6Al-4 V/CFRP/
AA-7050

WC twist drills DLC and CVD coated 
diamond

0.08 and 0.15 mm/rev 1. Diameter of holes
2. Surface roughness
3. Burr height
4. Drill bit wear

[78]

Ti-6Al–4 V/CFRP/
AA7050

WC drills CVD diamond coated, 
C7 coated, uncoated

Feed (mm/rev)—0.05, 
0.1, and 0.15

Speed—rev/min 
(1000/2000)

(2000/4000)
(3000/6000)

1. Drill bit life
2. Thrust force

[66]

CFRP/Al 7010 stack Standard twist drill Diamond, TiAlCrN, 
AlTiSiN-G coated and 
uncoated

Speed—55 m/min (3000 
rev/min)

Feed—0.04 mm/rev
Feed rate—120 mm/min
MQL—16 mm/min

1. Flank wear
2. Thrust forces
3. Drill bit failure
4. Hole diameter
5. Hole surface rough-

ness

[64]

CFRP/Al 2024 Micrograin carbide PVD coated nc-CrAlN/a-
Si3N4 (Tripple Alwin)

Spindle speed (rev/min) 
1050, 2020, 2750

Feed—0.05, 0.1, 
0.15 mm/rev

1. Surface roughness
2. Thrust force

[70]

CFRP/Al 2024/CFRP Standard twist drill Uncoated and TiAlN 
coated

Speed 15, 30, 45, 60 m/
min

Spindle speed 752, 1504, 
2256, 3009 rev/min

Feed—0.025, 0.05, 
0.075, 0.01 mm/rev

1. Hardness of the coat-
ing

2. Adhesion of Al
3. Delamination factors
4. Thrust forces
5. Surface cavities

[69]

CFRP/Al7075/CFRP Standard twist drill TiAlN, DLC coated Different cutting speed 
and feed for both coat-
ings

1. Drill bit wear
2. The delamination 

factor

[63]

T800/X850 CFRP and 
7075-T651 Al

Drill with double point 
angle

Diamond coated Spindle speed—1000, 
2000, 3000 rev/min

Feed rate—0.02, 0.04, 
0.06, 0.08 mm/rev

1. Thrust forces
2. Drilling temperature
3. Diameter of the hole
4. Hole surface rough-

ness

[67]

CFRP/Al7075-T6 Twist drill Uncoated, ta-C, ta-C + Ti, 
ta-C + Cr coated

Spindle speed—2600 
rev/min

Feed rate—0.05 mm/rev

1. Delamination
2. Burr height

[163]

CFRP/Al7075-T6 Twist drill Uncoated, ta-C, ta-C + Ti, 
ta-C + Cr coated

Spindle speed—2600 
rev/min

Feed rate—0.05 mm/rev

1. Hole diameter error
2. Hole surface rough-

ness
3. Circularity error

[135]

CFRP/Al7075-T6 Twist drill Uncoated and ta-C coated Spindle speed (rev/
min) = 2600

Feed rate (mm/rev) = 0.05

1. Hole diameter error
2. Hole surface rough-

ness
3. Circularity error

[189]
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(DF) than TiAlN due to DLC’s high hardness, which reduces 
thrust forces. Drilling from CFRP to metal minimizes exit 
delamination by providing support from the metal layer. Burr 
formation in titanium panels also presents significant chal-
lenges, increasing cutting time by up to 40% and assembly 
costs by 30%. Coated drills like TiAlN and diamond reduce 
burr height compared to uncoated drills, with TiAlN-coated 
drills showing reduced aluminum adhesion and diamond-
coated drills benefiting from high thermal conductivity. Min-
imum quantity lubrication (MQL) further aids TiAlN drills 
in reducing burrs, though diamond-coated drills may see 
increased burrs due to chip congestion. Drilling from metal 
to CFRP generally minimizes burr formation. Thus, coat-
ing selection, drilling sequence, and lubrication are key to 
optimizing drill performance and reducing defects in CFRP/
metal stacks. The surface roughness of holes in composite/
metal stacks is heavily influenced by material properties, 
machining conditions, and drill bit type. Coated drills, like 
nc-CrAlN/a-Si3N4 nano and diamond coatings, generally 
produce smoother surfaces than uncoated drills by reduc-
ing wear and enhancing finish. Diamond-coated drills, with 
their low friction, high hardness, and thermal conductivity, 
provide smoother surfaces and less thermal damage, espe-
cially in CFRP and aluminum. Roughness tends to increase 
with drill wear, and uncoated drills typically show higher 
roughness over time. Drilling from metal to composite also 
raises surface roughness due to chip evacuation challenges. 
Cooling methods, such as spray mist, help manage tem-
perature and reduce roughness. In stack-up drilling, coated 
drills generally maintain better hole diameter control and 
circularity than uncoated bits, thanks to wear resistance and 
reduced thermal impact. However, drill wear, temperature 
variations, and material expansion affect diameter accuracy. 
Circularity can improve over time as drill stability increases, 
though factors like material type, stack depth, and cooling 
conditions (e.g., MQL) may also impact circularity. Opti-
mal drill coatings and controlled conditions are essential 
for minimizing errors and ensuring quality in stack-up drill-
ing operations. In summary, integrating hybrid composite/
metal stack panels in aircraft manufacturing requires precise 
drilling to ensure quality and performance. Coated drill bits, 
like Ti-based and diamond coatings, enhance wear resist-
ance, reduce friction, and manage heat, addressing chal-
lenges in drilling CFRP/metal stacks. These coatings help 
control drilling temperatures, reduce delamination and burr 
formation, and improve surface roughness and circularity. 
The direct comparison of different coatings under various 
conditions are shown in Table 5. Also, the advantages and 
disadvantages of each coating type used by researchers in 
the past for coating drill bits for composite/metal stack up 
drilling are tabulated in Table 6. While challenges remain 
in drill wear, temperature effects, and diameter consistency, 
selecting the right coatings and optimizing conditions are Ta
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essential for advancing efficiency, reliability, and sustain-
ability in aerospace manufacturing.

To address the challenges identified in this review paper, 
certain recommendations can be considered in the future. 
Research into the optimal thickness of coatings to balance 
the benefits of reduced wear and friction with potential draw-
backs like increased cutting-edge radius and initial thrust 
forces may help to achieve better drill quality and to keep 
that parameter a constant one. Additionally, quantifying the 
bond strength of coating with tool and adding a dopant layer 
based on it may improve the bond strength. Development 
of new cost-effective, environmentally friendly coating with 
enhanced wear resistance, thermal stability, and reduced 
friction such as novel nanocomposite coatings, and multi-
layer coatings may also help to improve the drilling quality. 
Development of hybrid coatings that combine the benefits of 
different materials, such as the hardness of diamond with the 
lubricity of DLC or incorporating multiple layers with dif-
ferent properties, can also be tried. Integration of advanced 
lubrication and cooling techniques, to work synergistically 
with coated drill bits and further reduce temperatures and 
wear, can also be experimented. By focusing on these trends, 
the aerospace industry can continue to advance the perfor-
mance and reliability of drilling operations in hybrid com-
posite/metal stack panels, ultimately leading to more efficient 
manufacturing processes and higher-quality end products.
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