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Abstract— Mordell’s equation, 𝑦2 + 2 = 𝑥3, which is historically important, was solved using complex numbers and more 

specifically using the unique factorization method. In this paper, it is shown that Mordell’s equation can be solved by using 

elementary mathematics and the Fermat’s little theorem. In the first step, it is shown that if (𝑥, 𝑦)  is a solution of the 

aforementioned equation then  𝑥 ≠ 𝑦 and then the equation is reduced to a cubic equation. In the next step, it is shown that this 

cubic equation has no other integer solution than  𝑥 = 3 using very elementary mathematics and the Fermat’s little theorem, and 

hence the Mordell’s equation has only the well-known solution 𝑥 = 3, 𝑦 = ±5. 
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I.  INTRODUCTION  

Pierre de Fermat, a famous French mathematician, challenged 

the Europeans by inviting them to find the integer solutions of 

the now well-known Mordell’s equation 𝑦2 + 2 = 𝑥3 

(Conrad, 2009; Leyandekkers and Shannon, 2002; Mordell, 

1914). It was said that Europeans failed to find the integer 

solutions and the proof of Fermat was also vague 

(Leyandekkers and Shannon, 2002).  Fermat claimed that he 

could solve this equation but with no details (Conrad, 2009). 

Later, very famous Unique Factorization Method, hereafter 

referred to as UFM, was developed and since then the integer 

solution of the Mordell’s equation was found using the UFM 

(Conrad, 2009). In the UFM, one has to use complex numbers 

but the main objective of this paper is to introduce a novel 

method in which only elementary mathematics and the 

Fermat’s Little Theorem (FLT) are used to obtain the integer 

solutions of the Mordell’s equation. The general case of 

Mordell’s equation, 𝑦2 = 𝑥3 + 𝑘  for nonzero integer k, 

defines an elliptic curve over ℚ.  Mordell (1914) showed that 

there are at most finitely many integer solutions to the 

aforementioned equation. It must be noted that in the available 

literature, Stephens (1975) studied the number of co-prime 

solutions to the general case of Mordell’s equation. However, 

there was no hint to solve the equation when 𝑘 = −2, which 

is covered in this work. 

 

II. MATERIALS AND METHODOLOGY 

Consider the Mordell’s equation given by  

 

                     𝑦2 + 2 = 𝑥3                                                   (1) 

 

To find integer solutions of (1),   we shall show the use of 

elementary mathematics together with Fermat’s little theorem.  

From (1), it is obvious that 𝑥 is positive and if 𝑥 is even, then 

𝑥3 ≡ 0 (mod 8). Then by (1), we have   𝑦2 ≡ −2 (mod 8).  
However,  −2 (mod 8) is not a square. Therefore, 𝑥 should be 

odd and hence 𝑦  should also be odd (Conrad, 2009). 

Moreover, (𝑥, 𝑦) = 1 which follows from (1). 

Now, we shall show that 𝑦 ≠ 𝑥. If 𝑦 = 𝑥, then 𝑥3 − 𝑥2 > 2 

unless 𝑥 ≠ 1 . It is clear from (1) that 𝑥  can not be one. 

Therefore 𝑦 ≶ 𝑥. Now since x and y are odd, together with the 

aforementioned result we can write 𝑦 = 𝑥 + 2𝑚, where 𝑚 

is a nonzero integer. 

It follows from (1) that 

 

   𝑥3 − 𝑥2 − 4𝑚𝑥 − 2(1 + 2𝑚2) = 0                (2) 

 

Since it is obvious from Equation (1) that 𝑥 > 0 and 𝑥 ≠ 1 

and we proved that x must be odd,   the next odd positive 

integer x can take is 3. When 𝑥 = 3 , the Equation  

(2) becomes   𝑚2 + 3𝑚 − 4 = 0  and the roots of this 

quadratic equation  are 𝑚 = 1, −4.   Conversly,  when  𝑚 =
1 or − 4, we obtain  𝑥 = 3 as the only integer solution for the 

cubic Equation (2). Now it is clear that  (𝑚 = 1, 𝑥 =
3) and (𝑚 = −4 ,  𝑥 = 3)  satisfy the Equation (2), 

respectively. Moreover, since x is odd, the possible integer 

roots of 𝑥3 − 𝑥2 − 4𝑚𝑥 − 2(1 + 2𝑚2) = 0   are odd. And 

hence those positive odd integers are factors of (1 + 2𝑚2).  

Here, it is noteworthy to mention that: 

when 𝑚 = 1, we have positive integer factor of  (1 + 2𝑚2) =
3  as 𝑥 = 1 and 3.  We choose only  𝑥 = 3  since 𝑥 ≠ 1. 
When  𝑚 = − 4 , we have positive integer factors of  

(1 + 2𝑚2) = 33  as  𝑥 = 1,3, 11 and 33. We choose only 𝑥 =
3. We neglect 1, 11 and 33 since 𝑥 ≠ 1 and 11 and 33 do not 

satisfy the cubic equation.    

All the facts mentioned above confirm that the smallest 

positive integer that x can take is 3. 

Now since   𝑦 = 𝑥 + 2𝑚 and  𝑚 = 1 or 𝑚 = −4 , we have 

𝑦 = ±5. In other words, 𝑥 = 3, 𝑦 = ±5 are the solutions of 

Equation (1).  

Next, we shall show that these are the only solutions of this 

equation. 

If (1 + 2𝑚2) is a prime number solution for 𝑥, then from (2), 

we have 

 

                   𝑚2(1 + 2𝑚2) − (2𝑚 + 1) = 0                     (3) 

 

This means that 𝑚 should divide 1, and hence 𝑚 = 1 and 𝑥 =
3. Therefore, there is no any other prime number solution 

which is equal to 1 + 2𝑚2 other than 𝑥 = 3. It is important to 

mention here that when m divides 1, we have 𝑚 = ±1.  
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However, we neglect the case when  𝑚 =
−1 since it does not satisfy Equation (3). 

Now we assume that 1 + 2𝑚2  is a composite number and 

𝑚 ≢ 0 (mod 3). 

Then we have 1 + 2𝑚2 = 3 + 2(𝑚2 − 1) ≡ 0 (mod 3) from 

the FLT. Let 1 + 2𝑚2 = 3𝑝𝑞 in this case.  

If 𝑥 = 3  is a solution of (2), then 𝑝𝑞 = 3 − 2𝑚 > 0 . 

Therefore, 𝑚 = 1, 𝑝𝑞 = 1,  and 𝑥 = 3 , again. If 𝑝  is a 

solution of the Equation (2), we must have 

 

                        𝑝2 − 𝑝 − 2(2𝑚 + 3𝑞) = 0                        (4) 

 

It is clear that there is no integer solution for odd 𝑝 such that 

𝑝 ≡ 0 (mod 3)  because it does not divide 2𝑚 + 3𝑞  since 

𝑚 ≢ 0 (mod 3). If 𝑝 ≢ 0 (mod 3), consider 

 

                         3𝑝𝑞 = 1 + 2m2                                         (5) 

 

Now multiplying (4) by 𝑚 and combining the result with (5), 

we get 

                      𝑚(𝑝2 − 𝑝) − 6𝑝𝑞 = 6𝑞𝑚 − 2                                                   

                                        or                                                 (6) 

               𝑚(𝑝2 − 1 + 1 − 𝑝) − 6𝑝𝑞 = 6𝑞𝑚 − 2        

                                     

By the FLT, 𝑝2 − 1 = 0 (mod 3). Hence, (𝑝 − 1) or (𝑝 + 1) 

is divisible by 3. However, it is clear from (6) that 𝑝 − 1 ≢
0 (mod 3). Assume that 𝑝 + 1 ≡ 0 (mod 3). Then we have  

𝑝 = 3𝑘 − 1 for some postive integer 𝑘.  Then from (4), we 

have 

2(2𝑚 + 3𝑞) = (3𝑘 − 1)(3𝑘 − 2). 
In other words, 

 

                          9𝑘2 − 9𝑘 = 4𝑚 + 6𝑞 − 2                    (7a) 

                         3(3𝑘𝑞) = 3𝑞 + 1 + 2𝑚2                       (7b) 

Here (7b) is obtained from (5). 

Now, from (7a) and (7b), we obtain 

 

             9𝑘𝑞 + 9𝑘2 − 9𝑘 = 2𝑚2 + 4𝑚 + 9𝑞 − 1          (7c) 

 

If 𝑞 = 1, (7c) becomes 

 

                  9𝑘2 = 2𝑚2 + 4𝑚 + 8                                   (7d) 

 

Accordingly, 𝑘 should be even and hence 𝑚 should also be 

even which follows from (7d). 

Let 𝑚 = 2𝑙 . Then (7d) becomes 9𝑘2 = 8(𝑙2 + 𝑙 + 1)  and 

hence we deduce that (7d) never holds since 𝑙2 + 𝑙 + 1 is odd 

for all 𝑙. As a deduction from the quadratic equation (4), we 

get that ( 25 + 16𝑚)  is not a perfect square for any 

integer 𝑚 > 0. Again we deduce from (7c) that  

 

9𝑘𝑞 + 9𝑘2 − 9𝑘 = 2𝑚(𝑚 − 1) + 6𝑚 + 9𝑞 − 1 

 

If (𝑚 − 1) is divisible by 3, (7c) never holds. Similarly, (7c) 

can be written as 
 

 

3𝑘𝑞 + 3𝑘2 − 3𝑘 =
2

3
(𝑚 + 1)2 + 3𝑞 − 1 

 

It is clear that (7c) does not hold even if 𝑚 + 1 ≡ 0 (mod 3) 

and 𝑚 ≢ 0 (mod 3). Therefore we conclude that Equation (2) 

has no integer solution other than 𝑥 = 3  when 𝑚 ≢
0 (mod 3). 

Now suppose that 𝑚 = 3𝑡 , where 𝑡  is an integer. 𝑥 = 1 +
2𝑚2  does not hold unless 𝑚 = 1  as before. Now, let 1 +
2𝑚2 = 𝑝𝑞 and let 𝑥 = 𝑝. Then from (2), we have 

 

                        𝑝2 − 𝑝 − 2 (2𝑚 + 𝑞) = 0                        (8) 

 

Now, 𝑝 ≢ 0 (mod 3) since 𝑚 ≡ 0 (mod 3). As before, 𝑝 −
1 ≢ 0 (mod 3) since 𝑞 ≢ 0 (mod 3). 

Assume that 𝑝 + 1 ≡ 0 (mod 3). Let 𝑝 = 3𝑘 − 1 as before 

and upon substitution we obtain from (8) 

 

                       18𝑘2 − 18𝑘 − 8𝑚 = 4𝑞 − 4                  (9a) 

                                 72𝑡2 = 4𝑝𝑞 − 4                            (9b) 
 

where, (9b) follows from 𝑚 = 3𝑡 and 1 + 2𝑚2 = 𝑝𝑞   . 
From (9a) and (9b), we get 72𝑡2 − 18𝑘2 + 18𝑘 + 24𝑡 =
4𝑞(𝑝 − 1) and this leads to the contradiction that 𝑝 − 1 ≡
0 (mod 3). Therefore, we can conclude that (1) has no other 

integer solution than 𝑥 = 3, 𝑦 = ±5. 

 

III. RESULTS AND DISCUSSION 

Mohanthy (1973) showed that if 𝑁′(𝑘) denoted the number of 

coprime integer solutions x, y to Diophantine equation  𝑦2 −
𝑘 = 𝑥3 for nonzero integer k then   lim sup

𝑘→∞
𝑁′(𝑘) ≥ 8  and 

two years later, Stephens (1975) showed that  

 

lim sup
𝑘→∞

𝑁′(𝑘) ≥ 8 and lim sup
𝑘→−∞

𝑁′(𝑘) ≥ 12. 

 

Moreover, Bennett and Ghadermarzi (2015)  solved the above 

equation for all integer k with |k| ≤ 107. As special case for the 

above equation, when 𝑘 = −2,  Beukers (2011) and Conrad 

(2009) found the integer solutions to the equation  𝑦2 + 2 =
𝑥3 by using UFM. In contrast to the above methods we could 

solve the aforementioned equation, using elementary 

mathematics and the FLT.  

IV. CONCLUSION 

In this paper we presented a novel method to solve the special 

Mordell’s equation given by  𝑦2 + 2 = 𝑥3 . By using 

elementary mathematics together with FLT we could obtain 

solutions as 𝑥 = 3, 𝑦 = ±5 of the Mordell’s equation. 
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